
Selecting the Appropriate Consistency Algorithm for CSPs Using Machine Learning Classifiers

Daniel J. Geschwender, Shant Karakashian, Robert J. Woodward, Berthe Y. Choueiry, Stephen D. Scott
Department of Computer Science & Engineering • University of Nebraska-Lincoln

Constraint Satisfaction Problem:

 Used to model constrained

combinatorial problems

 Important real-world applications:

hardware & software verification,

scheduling, resource allocation, etc.

A CSP is defined as follows:

Given
 A set of variables {A,B,C}
 Their domains DA={1,2,3}, DB={1,2,3,4}, DC={0,1}
 A set of constraints: {A≥B,B≠2,A+C<3}
Question
 Find a solution NP-complete
 Count number of solutions #P
 Find minimal network NP-complete
 Minimize number of broken constraints NP-hard

Tree Decomposition:

 Used to break up a CSP
into clusters arranged in
a tree structure

 Each cluster is a
subproblem that can be
independently handled

 Filtering performed on a
cluster propagates to
neighboring clusters

Minimal Network:

 Is a consistency property
 Guarantees that every tuple allowed by a constraint must participate in some

solution to the CSP (i.e., the constraints are as minimal as possible)

Two Algorithms for Enforcing Minimality:

 ALLSOL: better when there are many ‘almost’ solutions
o Finds all solutions without storing them, keeps tuples that appear in at

least one solution
oOne search explores the entire search space

 PERTUPLE: better when many solutions are available
o For each tuple, finds one solution where it appears
oMany searches that stop after the first solution

The Problem of ALLSOL vs. PERTUPLE:

 The performance of the two algorithms varies widely
 One algorithm may complete quickly while the other may not terminate
 The performance depends on size and difficult of the CSP instance

Question: Can we use Machine Learning to classify the instance

& predict the best algorithm?

Using Machine Learning:

 We used a decision tree classifier (J48 from Weka Machine Learning suite) to
make our predictions

 Each instance is a single cluster from a tree decomposition
 The 12 features of the CSP are observed
 CPU time for ALLSOL & PERTUPLE is recorded for each instance
 Experimented with four sets of training conditions

Future Work:

 Use a larger & more diverse set of benchmarks
 Explore additional features and classifiers
 Consider additional consistency properties & propagation algorithms

Supported by NSF Grant No. RI-111795 and Undergraduate

Creative Activities and Research Experiences Program

(UCARE) of the University of Nebraska-Lincoln. Experiments

conducted at UNL’s Holland Computing Center.

Experiments:

1. All instances – Trained using all data collected
2. δt ≥ 100ms – Removed all instances where the difference in time was less

than 100ms
3. Weighted – All instances are given a weight equal to the difference in

execution time of the two algorithms
4. Cost – A cost matrix is used in the training, which provides average

misclassification costs for each class

Practical Tractability: [Karakashian+ AAAI 2013]

 Enforces minimality on each cluster of a tree decomposition
 Bolsters propagation between clusters by adding constraints to separators
 Solves many instances in a backtrack-free manner

Our Classification: 3592 instances from 5 benchmarks

Larger Instance Space: 318158 instances from 119 benchmarks

Strategy F-measure Time saved Time lost

% ms ms

All instances .727 99.87% 15,301,950 19,350

δt ≥ 100ms .729 99.90% 15,306,510 14,790

Weighted .743 99.96% 15,314,980 6,320

Cost .557 99.57% 15,255,190 66,110

Experiment Results:

Feature Set:

Characteristics of the problem
selected to differentiate the
classes

• Kappa – predicts if instance

is near phase transition
• relLinkage – likelihood of a

tuple at the overlap of
relations to be in solution

• tupPerVvp – count of tuples
containing a given variable
value pair

• relPerVar – number of
relations on a given variable

Date July 7, 2013

A B
{1,2,3} {1,2,3,4}

A≥B

(1,1) (2,1) (2,2)
(3,1) (3,2) (3,3)

A
B

C

{1,2,3}

{1,2,3,4}

{0,1}

B≠1

A≥B

A+C<3

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 0.01 0.1 1 10 100 1000 10000 100000

A
llS

o
l
C

P
U

 t
im

e
 (

s
)

PerTuple CPU time (s)

CPU time

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 0.001 0.01 0.1 1 10 100 1000

A
llS

o
l
C

P
U

 t
im

e
 (

s
)

PerTuple CPU time (s)

CPU time

