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Constraint Satisfaction Problem: 

 Used to model constrained 

combinatorial problems 

 Important real-world applications: 

hardware & software verification, 

scheduling, resource allocation, etc. 

A CSP is defined as follows: 

Given 
 A set of variables                                                                         {A,B,C} 
 Their domains                                    DA={1,2,3}, DB={1,2,3,4}, DC={0,1} 
 A set of constraints:                                                     {A≥B,B≠2,A+C<3} 
Question 
 Find a solution                                                                     NP-complete 
 Count number of solutions                                                                   #P 
 Find minimal network                                                            NP-complete 
 Minimize number of broken constraints                                          NP-hard 

 
 

Tree Decomposition: 

 Used to break up a CSP 
into clusters arranged in 
a tree structure 

 Each cluster is a 
subproblem that can be 
independently handled 

 Filtering performed on a 
cluster propagates to 
neighboring clusters 

Minimal Network: 

 Is a consistency property 
 Guarantees that every tuple allowed by a constraint must participate in some 

solution to the CSP (i.e., the constraints are as minimal as possible) 
 

 

Two Algorithms for Enforcing Minimality: 

 ALLSOL: better when there are many ‘almost’ solutions 
o Finds all solutions without storing them, keeps tuples that appear in at 

least one solution 
oOne search explores the entire search space 

 PERTUPLE: better when many solutions are available 
o For each tuple, finds one solution where it appears 
oMany searches that stop after the first solution 

 

The Problem of ALLSOL vs. PERTUPLE: 

 The performance of the two algorithms varies widely 
 One algorithm may complete quickly while the other may not terminate 
 The performance depends on size and difficult of the CSP instance 

  
Question: Can we use Machine Learning to classify the instance  

& predict the best algorithm? 

Using Machine Learning: 

 We used a decision tree classifier (J48 from Weka Machine Learning suite) to 
make our predictions 

 Each instance is a single cluster from a tree decomposition 
 The 12 features of the CSP are observed 
 CPU time for ALLSOL & PERTUPLE is recorded for each instance 
 Experimented with four sets of training conditions 

Future Work: 

 Use a larger & more diverse set of benchmarks 
 Explore additional features and classifiers 
 Consider additional consistency properties & propagation algorithms 
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Experiments: 

1. All instances – Trained using all data collected 
2. δt ≥ 100ms – Removed all instances where the difference in time was less 

than 100ms 
3. Weighted – All instances are given a weight equal to the difference in 

execution time of the two algorithms 
4. Cost – A cost matrix is used in the training, which provides average 

misclassification costs for each class 
 

Practical Tractability:  [Karakashian+ AAAI 2013] 

 Enforces minimality on each cluster of a tree decomposition 
 Bolsters propagation between clusters by adding constraints to separators 
 Solves many instances in a backtrack-free manner 

Our Classification:                      3592 instances from 5 benchmarks 

 
 

Larger Instance Space:          318158 instances from 119 benchmarks 

 
 

Strategy F-measure Time saved Time lost 

% ms ms 

All instances .727 99.87% 15,301,950 19,350 

δt ≥ 100ms .729 99.90% 15,306,510 14,790 

Weighted .743 99.96% 15,314,980 6,320 

Cost .557 99.57% 15,255,190 66,110 

Experiment Results: 

 
 

Feature Set: 

Characteristics of the problem 
selected to differentiate the 
classes 

 
• Kappa – predicts if instance 

is near phase transition 
• relLinkage – likelihood of a 

tuple at the overlap of 
relations to be in solution 

• tupPerVvp – count of tuples 
containing a given variable 
value pair 

• relPerVar – number of 
relations on a given variable 
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