Selecting the Appropriate Consistency Algorithm for CSPs Using Machine Learning Classifiers

Daniel J. Geschwender, Shant Karakashian, Robert J. Woodward, Berthe Y. Choueiry, Stephen D. Scott
Department of Computer Science & Engineering ® University of Nebraska-Lincoln

Constraint Satisfaction Problem: s21(The Problem of ALLSOL vs. PERTUPLE: Experiment Results:

e Used to model constrained @ e The performance of the two algorithms varies widely
combinatorial problems A2B Pryet e One algorithm may complete quickly while the other may not terminate Strategy F-measure Time saved Time lost

e e The performance depends on size and difficult of the CSP instance 0/

e Important real-world applications: Pyt 0 ms ms
hardware & software verificgtion, = Question: Can we use Machine Learning to classify the instance All Instances A27 99.87% 15,301,950 19,350
scheduling, resource allocation, etc. & predict the best algorithm? 5, > 100ms 729 09 90% 15.306.510 14.790

C Weighted (43 99.96% 15,314,980 0,320
. Cost 557 09.57%| 15,255,190 66,110

A CSP is defined as follows: Feature Set: -

Given Characteristic_s of th_e problem 2. log,(awg(rellinkage)) Our Classification: 3592 instances from 5 benchmarks

e A set of variables {A,B,C} selected to differentiate the ’ U

e Their domains D,={1,2,3}, Dg={1,2,3,4}, D-={0,1} classes 3. logy(stDev(rellinkage)) e

e A set of constraints: {A>B,B+2,A+C<3} 4. stDev(rellinkage)/avg(relLinkage) ' o

Question « Kappa — predicts if instance < un -) i

e Find a solution NP-complete is near phase transition - stDev(tupPeryvp)/avg(cupPerVvp) 100 ¢ e ‘-

e Count number of solutions #P = re/L/nkage— likelihood of a 6. avg(tupPerVvpNorm) i

e Find minimal network NP-complete tuple at the overlap of 7. stDev(tupPerVvplorn) o lop -

e Minimize number of broken constraints NP-hard relations to be in solution 5. stDev(tupPerVvplioraProd o |

 tupPerWvp — count of tuples © SIEEOAERE SRR B = L ’
containing d given variable 9. stDev(tupPerVvpNormProd)/avg(tupPerVvpNormProd) % '
I ilitye ' value pair 10. avg(relPerVar) = '

Practical Tractability: [Karakashian+ AAAI 2013] - relPerar — number of ’ T ooy :

e Enforces minimality on each cluster of a tree decomposition relations on a given variable !+ stPev(relPervar) | o 8

e Bolsters propagation between clusters by adding constraints to separators 12. stDev(relPerVar)/avg(relPerVar) 0.01 L @ 1

e Solves many instances in a backtrack-free manner -

0001 Z]] |]] |]] |]] |]] |]]]
o 5 - 5 . 0.001 0.01 0.1 1 10 100 1000

Tree Decomposition: Using Machine Learning: S ——
e Used to break up a CSP e \We used a decision tree classifier (J48 from Weka Machine Learning suite) to

into clusters arranged in make our predictions N

a tree structure » Each instance Is a single cluster from a tree decomposition Larger Instance Space: 318158 instances from 119 benchmarks
e Each cluster is a e The 12 features of the CSP are observed -

subproblem that can be e CPU time for ALLSOL & PERTUPLE is recorded for each instance CPU time

independently handled e Experimented with four sets of training conditions HOOORS
o Filtering performed on a oo | I L I N ;

cluster propagates to § ' . BN e ;

neighboring clusters li< #1< 0-56>T° gl e e)

. ALLSOL 10 < #8<0.06 SR° @ | Sul

Minimal Network: \‘ - ! g W0F i -

e Is a consistency property e #11<3.18 > ALLSOL N ;

e Guarantees that every tuple allowed by a constraint must participate in some y l . l 2 o '
solution to the CSP (i.e., the constraints are as minimal as possible) li< #1<1.01 >ﬁ Yi(#5<0.24 >1N° Do o -

. . - . YT< #6=0.37 >N10 Yci<#“<2~63 N ‘ALLSOL : #2<-4.18>‘TO [! V
Two Algorithms for Enforcing Minimality: R ;
Yes o e B P |

e ALLSOL: better when there are many ‘almost’ solutions PERTUPLY ALLSOL J| ALLSOL J< #7"“0'45}1 l<#12(0+47ﬁ ALLSOL O et

o Finds all solutions without storing them, keeps tuples that appear in at 001 01 ! Pe;g . ti;zo(s) 1000 10000 100000
least one solution |PERTUPLE ‘ ALLSOL |[PERTUPLE ALLSOL i
o One search explores the entire search space
e PERTUPLE: better when many solutions are available
o For each tuple, finds one solution where it appears . _ t Future Work:
o Many searches that stop after the first solution Xperiments. e Use a larger & more diverse set of benchmarks
1. All instances — Trained using all data collected e Explore additional features and classifiers
Y 21 (2,2) 2. ot =2 100ms — Removed all instances where the difference in time was less e Consider additional consistency properties & propagation algorithms
B34) 13:2) 13:3) than 100ms
A B 3. Weighted — All instances are given a weight equal to the difference in |
A>B execution time of the two algorithms N HWERS”YIOFQ' Constraint e | Supported by NSF Gran o RIILI795 and Unergracuat
(123} (12341 4. Cost — A cost matrix is used in the training, which provides average enras Systerms 0SB (0care) o tne rerstyof ebrades-Linoon. Experments
Fer 7=y misclassification costs for each class Llncoln Lﬂborﬂt&rg 'r“(\r conducted at UNL’s Holland Computing Center.

Date July 7, 2013

