
A Constraint Satisfaction Problem (CSP) is a combinatorial decision problem defined by a

set of variables {A,B,C,…}, a set of domain values for these variables, and a set of

constraints {R1,R2,R3,…} restricting the allowable combinations of values for variables.

1. The property Relational Neighborhood Inverse Consistency (RNIC)

2. Characterization of RNIC in relation to previously known properties

3. An efficient algorithm for enforcing RNIC, bounded by degree of the dual graph

4. Three reformulations of the dual graph to address topological limitations of the dual graph

5. An adaptive, automatic selection policy for choosing the appropriate dual graph

6. Empirical evidence on difficult CSP benchmarks

Contributions

Local Consistency

Definition

R(*,m) ensures that, in every given

combination φ of m relations, every tuple τi

in every relation Ri can be extended to a

tuple τj in every relation Rj φ\{Ri} such

that all those tuples form a consistent

solution to the relations in φ [3].

Neighborhood Inverse Consistency (NIC) ensures that every

value in the domain of a variable can be extended to a solution in the

subproblem induced by the variable and its neighborhood [1].

0,1,2

0,1,2

0,1,2

0,1,2

A

B

C

D

Local consistency is at the heart of Constraint Processing. It guarantees that all values (or

tuples) participate in at least one solution in a given combination of variables (or constraints).

R3

A B

C
D

E

F

R1

R4

R2
R5

R6

Hypergraph

R4

BCD

ABDE

CF

EF AB

R3 R1

R2

C

F

E

BD

AB

D AD

A
AD

B

R5

R6

Dual Graph

The task is to find a solution (i.e.,

an assignment of a value to each

variable satisfying all constraints), or

to find all such solutions.

Relational Neighborhood Inverse

Consistency (RNIC) ensures that every

tuple τi in every relation Ri can be extended

to a tuple τj in each Rj Neigh(Ri) such that

together all those tuples are consistent with

all the relations in Neigh(Ri) [4].

• Number of subproblems=number of constraints=e

• Size of subproblems varies, |Neigh(Ri)|+1

• Six induced subproblems
• Neigh(R1) = {R2,R3}

• Neigh(R2) = {R1,R4}

• Neigh(R3) = {R1,R4,R5,R6}

• Neigh(R4) = {R2,R3,R5,R6}

• Neigh(R5) = {R3,R4,R6}

• Neigh(R6) = {R3, R4,R5}

• Number of combinations = O(em) = e

• Size of each combination = m

• Twelve combinations for R(*,3)C
1. {R1,R2,R3}

2. {R1,R2,R4}

3. {R1,R3,R4}

4. {R1,R3,R5}

5. {R1,R3,R6}

6. {R2,R3,R4}

7. {R2,R4,R5}

8. {R2,R4,R6}

9. {R3,R4,R5}

10.{R3,R4,R6}

11.{R3,R5,R6}

12.{R4,R5,R6}

August 10th, 2011

R4

R3 R1

R2

R5

R6 R4

R3 R1

R2

R5

R6

• A queue Q of relations to update

• For each relation R, a queue of tuples Qt(R)

whose supports must be verified

• Algorithm iterates over every R in Q and

applies SEARCHSUPPORT to every τ in Qt(R)

• SEARCHSUPPORT runs over Neigh(R)

Algorithm for Enforcing RNIC

Index-Tree to quickly check the consistency of two tuples [3].

R4

R3 R1

R2

R5

R6

August 10th, 2011

Characterizing RNIC

GAC
R(*,2)C+DF

SGAC

RNIC+DF

R(*,3)C

wRNIC

R(*,4)C

RNIC R(*,δ+1)C
R(*,2)C≡

wR(*,2)C
wR(*,3)C

wR(*,4)C

wR(*,δ+1)C

 At the Relations Level At the Domains Level

Dynamically detect dangles, applying directional arc

consistency to quickly detect inconsistency.

R2,R3 are dangles in the subproblem for R1, induced by

Neigh(R1)∪{R1}

• d = maximum domain size

• k = maximum constraint arity

• e = number of relations

• δ = degree of the dual graph

• t = maximum number of tuples

• Time: O(tδ+1eδ)

• Delete at most O(te) tuples, enqueuing O(δ) relations

• For each tuple, SEARCHSUPPORT executes search on

a problem with δ variables of domain size t

• Space: O(ketδ)

• Storing O(etδ) supports, O(ketδ) Index-Trees

A B X D

0 1 0 1
ABCD ABXD

R2 R1

Given R1’s tuple:
0

0 1

1 1

1

1

1

τ1 τ2

τ3

τ4

Root

A

B

D

Index-Tree(R2,{A,B,D})

A B D

τ1
0 0 1

τ2
0 1 1

τ3
0 1 1

τ4
1 1 1

find its support in R2

Propagation Algorithm

Implementation

Complexity

SEARCHSUPPORT

..…

Neigh(R)
R

τ

τi

Reformulating the Dual Graph

Removing Redundant Edges [2]

• Dense dual graphs Neighborhoods are

large Cost of our algorithm increases

• Redundancy removal reduces cost

Triangulating the Dual Graph

• In cycles of length ≥ 4, propagation is

poor, RNICR(*,3)C

• Triangulation boosts propagation

Triangulating a minimal dual graph

• The two operations do not ‘clash’

• The solution set of the CSP is the same

in all three reformulations

• In total, four types of dual graphs

Selection Strategy

• If Density ≥ 15%, remove redundant edges

• If triangulation increases density no more

than two fold, triangulate

• Each operation is executed at most once

wRNIC
RNIC

wtriRNIC
triRNIC

August 10th, 2011

dGo = 60% dGw = 40%

R4

BCD

ABDE

CF

EF AB

R3 R1

R2

C

F

E

BD

AB

D AD
A AD

B

R5

R6 R4

BCD

ABDE

CF

EF AB

R3 R1

R2

C

F

E

BD

AB

AD

AD

R5

R6

Algorithm CPU #F Rank EquivCPU #C EquivCmp #BT-free
169 instances: aim-100, aim-200, lexVg, modifiedRenault, ssa

wR(*,2)C 944924 52 3 A 138 B 79
wR(*,3)C 925004 8 4 B 134 B 92
wR(*,4)C 1161261 2 5 B 132 B 108

GAC 1711511 83 7 C 119 C 33
RNIC 6161391 19 8 C 100 C 66

triRNIC 3017169 9 9 C 84 C 80
wRNIC 1184844 8 6 B 131 B 84

wtriRNIC 937904 3 2 B 144 B 129
selRNIC 751586 17 1 A 159 A 142

• CPU: Censored data calculated mean

• #F: Number of instances fastest

• Rank: Censored data rank based on

probability of survival data analysis

• EquivCPU: Equivalence classes by CPU

• #C: Number of instances completed

• EquivCmp: Equivalence classes by completion

• #BT-free: Number of instances solved BT-free.

Reflects strength of a given consistency, regardless

of implementation

Empirical Results

No

Yes No Yes

Yes

No

dGo ≥ 15%

dGtri ≤ 2dGo dGwtri ≤ 2dGw

Go Gwtri Gw Gtri

Start

R(*,3)C

wRNIC

R(*,4)C

RNIC
R(*,δ+1)C

R(*,2)C≡

wR(*,2)C
wR(*,3)C

wR(*,4)C

wR(*,δ+1)C

wtriRNIC
triRNIC

dGtri = 67%

R4

BCD

ABDE

CF

EF AB

R3 R1

R2

C

F

E

BD

AB

D AD
A AD

B

R5

R6

dGtri = 47%

R4

BCD

ABDE

CF

EF AB

R3 R1

R2

C

F

E

BD

AD
AD

R5

R6

Statistical analysis on benchmark problems. Max of 90 minutes per instance, yielding

censored data (data with values missing). Consistency properties used as full lookahead.

