
A Constraint Satisfaction Problem (CSP) is a combinatorial decision problem defined by a 

set of variables {A,B,C,…}, a set of domain values for these variables, and a set of 

constraints {R1,R2,R3,…} restricting the allowable combinations of values for variables. 

1. The property Relational Neighborhood Inverse Consistency (RNIC) 

2. Characterization of RNIC in relation to previously known properties 

3. An efficient algorithm for enforcing RNIC, bounded by degree of the dual graph 

4. Three reformulations of the dual graph to address topological limitations of the dual graph 

5. An adaptive, automatic selection policy for choosing the appropriate dual graph 

6. Empirical evidence on difficult CSP benchmarks 

Contributions 

Local Consistency 

Definition 

R(*,m) ensures that, in every given 

combination φ of m relations, every tuple τi 

in every relation Ri can be extended to a 

tuple τj in every relation Rj  φ\{Ri} such 

that all those tuples form a consistent 

solution to the relations in φ [3]. 

Neighborhood Inverse Consistency (NIC) ensures that every 

value in the domain of a variable can be extended to a solution in the 

subproblem induced by the variable and its neighborhood [1]. 
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Local consistency is at the heart of Constraint Processing.  It guarantees that all values (or 

tuples) participate in at least one solution in a given combination of variables (or constraints). 
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Dual Graph 

The task is to find a solution (i.e., 

an assignment of a value to each 

variable satisfying all constraints), or 

to find all such solutions. 

Relational Neighborhood Inverse 

Consistency (RNIC) ensures that every 

tuple τi in every relation Ri can be extended 

to a tuple τj in each Rj  Neigh(Ri) such that 

together all those tuples are consistent with 

all the relations in Neigh(Ri) [4]. 

• Number of subproblems=number of constraints=e 

• Size of subproblems varies, |Neigh(Ri)|+1 

• Six induced subproblems 
• Neigh(R1) = {R2,R3} 

• Neigh(R2) = {R1,R4}  

• Neigh(R3) = {R1,R4,R5,R6} 

• Neigh(R4) = {R2,R3,R5,R6} 

• Neigh(R5) = {R3,R4,R6} 

• Neigh(R6) = {R3, R4,R5} 

• Number of combinations = O(em) = e 

• Size of each combination = m 

• Twelve combinations for R(*,3)C 
1. {R1,R2,R3} 

2. {R1,R2,R4} 

3. {R1,R3,R4} 

4. {R1,R3,R5} 

5. {R1,R3,R6} 

6. {R2,R3,R4} 

7. {R2,R4,R5} 

8. {R2,R4,R6} 

9. {R3,R4,R5} 

10.{R3,R4,R6} 

11.{R3,R5,R6} 

12.{R4,R5,R6} 
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• A queue Q of relations to update 

• For each relation R, a queue of tuples Qt(R) 

whose supports must be verified 

• Algorithm iterates over every R in Q and 

applies SEARCHSUPPORT to every τ in Qt(R) 

• SEARCHSUPPORT runs over Neigh(R) 

Algorithm for Enforcing RNIC 

Index-Tree to quickly check the consistency of two tuples [3]. 
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Characterizing RNIC 
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 At the Relations Level At the Domains Level 

Dynamically detect dangles, applying  directional arc 

consistency to quickly detect inconsistency. 

R2,R3 are dangles in the subproblem for R1, induced by 

Neigh(R1)∪{R1} 

• d = maximum domain size 

• k = maximum constraint arity 

• e = number of relations 

• δ = degree of the dual graph 

• t = maximum number of tuples 

• Time: O(tδ+1eδ) 

• Delete at most O(te) tuples, enqueuing O(δ) relations 

• For each tuple, SEARCHSUPPORT executes search on 

a problem with δ variables of domain size t 

• Space: O(ketδ) 

• Storing O(etδ) supports, O(ketδ) Index-Trees 
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Reformulating the Dual Graph 

Removing Redundant Edges [2] 

• Dense dual graphs  Neighborhoods are 

large  Cost of our algorithm increases 

• Redundancy removal reduces cost 

Triangulating the Dual Graph 

• In cycles of length ≥ 4, propagation is 

poor, RNICR(*,3)C  

• Triangulation boosts propagation 

Triangulating a minimal dual graph 

• The two operations do not ‘clash’ 

• The solution set of the CSP is the same 

in all three reformulations 

• In total, four types of dual graphs 

Selection Strategy 

• If Density ≥ 15%, remove redundant edges 

• If triangulation increases density no more 

than two fold, triangulate 

• Each operation is executed at most once 
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wtriRNIC 
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dGo = 60% dGw = 40% 
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Algorithm CPU #F Rank EquivCPU #C EquivCmp #BT-free 
169 instances: aim-100, aim-200, lexVg, modifiedRenault, ssa 

wR(*,2)C 944924 52 3 A 138 B 79 
wR(*,3)C 925004 8 4 B 134 B 92 
wR(*,4)C 1161261 2 5 B 132 B 108 

GAC 1711511 83 7 C 119 C 33 
RNIC 6161391 19 8 C 100 C 66 

triRNIC 3017169 9 9 C 84 C 80 
wRNIC 1184844 8 6 B 131 B 84 

wtriRNIC 937904 3 2 B 144 B 129 
selRNIC 751586 17 1 A 159 A 142 

• CPU: Censored data calculated mean 

• #F: Number of instances fastest 

• Rank: Censored data rank based on 

probability of survival data analysis 

• EquivCPU: Equivalence classes by CPU 

• #C: Number of instances completed 

• EquivCmp: Equivalence classes by completion 

• #BT-free: Number of instances solved BT-free.  

Reflects strength of a given consistency, regardless 

of implementation 

Empirical Results 

No 

Yes No Yes 

Yes 

No 

dGo  ≥ 15% 

dGtri  ≤ 2dGo   dGwtri  ≤ 2dGw 

Go Gwtri Gw Gtri 

Start 

R(*,3)C 

wRNIC 

R(*,4)C 

RNIC 
R(*,δ+1)C 

R(*,2)C≡ 

wR(*,2)C 
wR(*,3)C 

wR(*,4)C 

wR(*,δ+1)C 

wtriRNIC 
triRNIC 

dGtri = 67% 
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dGtri = 47% 
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Statistical analysis on benchmark problems.  Max of 90 minutes per instance, yielding 

censored data (data with values missing).  Consistency properties used as full lookahead. 


