Contributions

- 1. The property Relational Neighborhood Inverse Consistency (RNIC)
- 2. Characterization of RNIC in relation to previously known properties
- 3. An efficient algorithm for enforcing RNIC, bounded by degree of the dual graph
- 4. Three reformulations of the dual graph to address topological limitations of the dual graph
- 5. An adaptive, automatic selection policy for choosing the appropriate dual graph
- 6. Empirical evidence on difficult CSP benchmarks

Definition

A Constraint Satisfaction Problem (CSP) is a combinatorial decision problem defined by a set of **variables** {A,B,C,...}, a set of domain **values** for these variables, and a set of **constraints** { R_1 , R_2 , R_3 ,...} restricting the allowable combinations of values for variables.

The task is to **find a solution** (i.e., an assignment of a value to each variable satisfying all constraints), or to **find all such solutions**.

Local Consistency

Local consistency is at the heart of Constraint Processing. It guarantees that all values (or tuples) participate in at least one solution in a given combination of variables (or constraints).

Neighborhood Inverse Consistency (NIC) ensures that every value in the domain of a variable can be extended to a solution in the subproblem induced by the variable and its neighborhood [1].

R(*,m) ensures that, in every given combination φ of m relations, every tuple τ_i in every relation R_i can be extended to a tuple τ_j in every relation $R_j \in \varphi \setminus \{R_i\}$ such that all those tuples form a consistent solution to the relations in φ [3].

Relational Neighborhood Inverse Consistency (RNIC) ensures that every tuple τ_i in every relation R_i can be extended to a tuple τ_j in each $R_j \in \text{Neigh}(R_i)$ such that together all those tuples are consistent with all the relations in $\text{Neigh}(R_i)$ [4].

- Number of combinations = $O(e^m) = e^{-1}$
- Size of each combination = *m*
- Twelve combinations for R(*,3)C

- Number of subproblems=number of constraints=e
- Size of subproblems varies, $|Neigh(R_i)|+1$
- Six induced subproblems
 - Neigh $(R_1) = \{R_2, R_3\}$
 - Neigh $(R_2) = \{R_1, R_4\}$
 - Neigh(R_3) = { R_1, R_4, R_5, R_6 }
 - Neigh(R_4) = { R_2, R_3, R_5, R_6 }
 - Neigh(R_5) = { R_3 , R_4 , R_6 }
 - Neigh(R_6) = { R_3 , R_4 , R_5 }

Algorithm for Enforcing RNIC

Propagation Algorithm

- A queue Q of relations to update \bullet
- For each relation R, a queue of tuples $Q_t(R)$ lacksquarewhose supports must be verified
- Algorithm iterates over every R in Q and ulletapplies SEARCHSUPPORT to every τ in $Q_t(R)$
- SEARCHSUPPORT runs over Neigh(R)

Index-Tree to quickly check the consistency of two tuples [3].

Index-Tree(R_2 ,{A,B,D})

SEARCHSUPPORT

Dynamically detect dangles, applying directional arc consistency to quickly detect inconsistency. R_2, R_3 are dangles in the subproblem for R_1 , induced by Neigh(R_1) \cup { R_1 }

Complexity

- Time: $O(t^{\delta+1}e\delta)$ •
 - Delete at most O(te) tuples, enqueuing $O(\delta)$ relations
 - For each tuple, SEARCHSUPPORT executes search on a problem with δ variables of domain size t
- **Space:** $O(ket\delta)$ ullet
 - Storing $O(et\delta)$ supports, $O(ket\delta)$ Index-Trees

- $d = \max(\max d)$
- k = maximum constraint arity
- e = number of relations
- $\delta = \text{degree of the dual graph}$
- t = maximum number of tuples

Reformulating the Dual Graph

Removing Redundant Edges [2]

- Dense dual graphs \rightarrow Neighborhoods are ulletlarge \rightarrow Cost of our algorithm increases
- Redundancy removal reduces cost

Triangulating the Dual Graph

- In cycles of length \geq 4, propagation is poor, $RNIC \equiv R(*,3)C$
- Triangulation boosts propagation ullet

Triangulating a minimal dual graph

- The two operations do not 'clash' ullet
- The solution set of the CSP is the same lacksquarein all three reformulations
- In total, four types of dual graphs \bullet

Selection Strategy

- If Density \geq 15%, remove redundant edges •
- If triangulation increases density no more • than two fold, triangulate
- Each operation is executed at most once •

Empirical Results

Statistical analysis on benchmark problems. Max of 90 minutes per instance, yielding censored data (data with values missing). Consistency properties used as full lookahead.

- **CPU**: Censored data calculated mean
- **#F**: Number of instances fastest
- **Rank**: Censored data rank based on probability of survival data analysis
- **EquivCPU**: Equivalence classes by CPU
- **#C**: Number of instances completed
- EquivCmp: Equivalence classes by completion
- **#BT-free**: Number of instances solved BT-free. Reflects strength of a given consistency, regardless of implementation

	Develo	ЦС	

Algorithm	CPU	#F	RAIIK	Equivero	#C	Equivernip	#DI-IIee			
169 instances: aim-100, aim-200, lexVg, modifiedRenault, ssa										
wR(*,2)C	944924	52	3	Α	138	В	79			
wR(*,3)C	925004	8	4	В	134	В	92			
wR(*,4)C	1161261	2	5	В	132	В	108			
GAC	1711511	83	7	С	119	С	33			
RNIC	6161391	19	8	С	100	С	66			
triRNIC	3017169	9	9	С	84	С	80			
wRNIC	1184844	8	6	В	131	В	84			
wtriRNIC	937904	3	2	В	144	В	129			
selRNIC	751586	17	1	Α	159	Α	142			