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                            High-level consistency effectively prune 
search space but can be costly 
 
 
1. Exploit cycles in the constraint network of a Constraint 

Satisfaction Problem (CSP) to vehicle constraint 
propagation 

2. Focus: Enforce POAC on a Minimum Cycle Basis (MCB) of 
the incidence graph of the CSP 

3. Empirically show benefit 

2. Minimum Cycle Basis 

1. Local Consistency 
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Generalized Arc Consistency (GAC) ensures a value in 
the domain of a variable in the scope of a relation can be 
extended to a tuple satisfying the relation. 
E.g., v3 can be removed from x2 

A constraint network 𝒫 = (𝒳, 𝒟, 𝒞) is Partition-One Arc-
Consistent (POAC) iff 𝒫 is SAC and for all xi∈𝒳, for all 
vi∈dom(xi), for all xj∈𝒳, there exists vj∈dom(xj) such that 
(xi,vi) ∈ AC(𝒫   {xj←vj})   [Bennaceur and Affane CP 2001] 
E.g., v1 can be removed from x4 because there is no such vj 
for x1 where (x4,v1) ∈AC(𝒫    {x1←vj}). 
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Singleton Arc Consistency (SAC) ensures that the CSP 
remains arc consistent after assigning a value to a variable. 
E.g., v0 can be removed from x1, x2, x3 
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Variables: {x1, x2, x3, x4, x5, x6} 
Domains: {v0, v1, v2, v3} for x1, x2, x3; {v1, v2} for x4, x5, x6 
Constraints: 

Benchmark   GAC POAC        POACQ APOAC A        POACQ 
Adaptive POAC the best 

TSP-25 # solv 15 14 15 15 15 
(# inst 15) ΣCPU (s) 4,303.12  >41,382.27 32,654.67 6,152.91 2,418.41 
cril # solv 6 7 7 8 8 
(# inst 8) ΣCPU (s)  >30,458.10  >16,282.45 >16,651.04 2,321.96 1,831.60 
QWH-20 # solv 10 10 10 10 10 
(# inst 10) ΣCPU (s) 2,256.61 6,154.43 3,007.98 2,236.32 2,061.63 
k-insertions # solv 17 17 18 18 18 
(#inst 32) ΣCPU (s)  >17,034.30  >21,639.31 11,814.83 6,129.92 8,940.59 

Non-adaptive POAC the best 
mug # solv 6 6 8 6 6 
(# inst 8) ΣCPU (s)  >54,724.38  >29,385.02 13,655.87  >34,207.98 >41,583.97 

GAC the best 
TSP-20 # solv 15 15 15 15 15 
(# inst 15) ΣCPU (s) 302.21 2,750.90 3,096.07 593.04 384.13 
renault  # solv 50 50 50 50 50 
(# inst 50) ΣCPU (s) 55.87 277.74 176.28 196.04 155.88 
myciel # solv 13 12 12 13 13 
(# inst 16) ΣCPU (s) 1,711.93 >21,564.06 >26,196.15 3,118.86 2,555.54 

4. Empirical Evaluations 

3. Localizing POAC 

Algorithm derived from POAC-1  [Balafrej+ AAAI 2014] 

Goto next variable 

Singleton test every value in domain 
Run arc-consistency on the entire problem 
Update counters 

Change? 

Start POAC-1 
Order variables by increasing dom/wdeg 
Start at first variable 

We introduce        POACQ, derived from POAC-1, 
with two major changes: 
1.  Restrict the singleton test to the neighborhood union of the 

MCB cycles in which it appears (subgraph) 
2.  Use a priority queue for propagation 

Re-queue 
relevant 
variables 

Singleton test every value in domain 
Run arc-consistency on the subgraph 
Update counters 

Change? 

Start        POACQ 
Put every variable in the queue 

Pop smallest dom/wdeg variable from queue 
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5. Future Research 
Extend approach to other high-level consistency algorithms 

Computed on incidence graph, bipartite graph G = (𝒳, 𝒞, E) 
𝒳: variables,  𝒞: constraints, E: link ci and xi ∈ scope(ci) 

A Minimum Cycle Basis (MCB): a cycle ∈ MCB cannot be 
obtained by symmetric difference from other cycles ∈ MCB  
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Union-Cycle POAC (       POAC): restrict the singleton test to 
the neighborhood of a variable and to the union of the MCB 
cycles in which the variable appears.  
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