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Abstract. In this paper, we extend the empirical study of a multi-agent
search method (ERA) for solving a Constraint Satisfaction Problem
(CSP) [15]. We compare the performance of this method to that of a
local search (LS) and a systematic (BT) search for solving the assign-
ment of Graduate Teaching Assistants (GTA) to academic tasks. This
real-world application, tight and often over-constrained, allows us to dis-
cover strengths and shortcomings of this multi-agent search, which would
not have been possible otherwise. We show that for solvable, tight CSPs,
ERA clearly outperforms both LS and BT, as it finds a solution when
the other two techniques fail. However, for over-constrained problems,
the multi-agent search method degenerates in terms of stability and the
quality of the solutions reached. We identify the source of this shortcom-
ing and characterize it as a deadlock phenomenon. Further, we discuss
possible approaches for handling and solving deadlocks.

1 Introduction

Constraint Satisfaction has emerged as a powerful paradigm for modeling and
solving large combinatorial problems. Scheduling and resource allocation are
some of the earliest application areas of this technology [6, 3]. In this document,
we discuss a specific application of constraint processing to a real-world problem.
This is the assignment of Graduate Teaching Assistants (GTA) to courses in the
Department of Computer Science and Engineering of the University of Nebraska-
Lincoln. The idea for this particular application was found on the web page of
Rina Dechter at the University of California, Irvine. This application is in fact a
critical and arduous responsibility that the department’s administration has to
handle every semester.

In this paper we conduct a comparative study of the behavior of various
search algorithms for solving this problem. Search algorithms for solving CSPs
are usually classified into two main categories: local repair and systematic algo-
rithms. Recently, Liu et al. [15] proposed a competitive multi-agent based search
where agents communicate indirectly through a common environment. On the



surface, this technique appears to be a variation of local search. However, they
differ slightly as we argue in Section 2.1. In order to understand and characterize
the behavior of this multi-agent search, we compare it to two other approaches
we implemented to solve this problem: a systematic backtrack search and a
hill-climbing local search. We stress that our investigations are motivated by,
and focused on, the GTA problem of which we have collected a few real data-
samples. Working on this practical application has allowed us to identify the
advantages and shortcomings of the multi-agent search, which would not have
been possible if we were solving toy problems, and surely difficult if we were us-
ing randomly-generated problems. The behaviors we identify and describe here
should be directly applicable to general CSPs (i.e., beyond our particular appli-
cation), and we are currently validating our conclusions on randomly generated
non-binary CSPs.

The results of our study can be summarized as follows. The multi-agent ap-
proach exhibits an amazing ability to avoid local optima. We trace this ability to
its fine-grain and de-centralized control mechanism in which agents try to self-
ishly realize their individual goals while communicating indirectly through the
environment. As a result, the multi-agent approach can solve tight CSPs when
the other two approaches fail. However, with unsolvable problems, its behavior
becomes erratic and unreliable and results in a deadlock state. We trace this
shortcoming to the decentralized control (the very same feature that constitutes
the strength of this approach) and also to the lack of direct inter-agent commu-
nications. We argue that deadlock is actually a precious feature that allows us
to identify conflicts, which is NP-hard in general. We show that when we try
to avoid the deadlock phenomenon by adding global control to the multi-agent
schema, we destroy its immunity to local optima. We argue that conflict reso-
lution requires negotiation mechanisms among the agents, and thus is heuristic
and problem-dependent.

This paper is structured as follows. Section 2 introduces multi-agent based
search, the GTA problem, and the ERA model. Section 3 describes five exper-
iments, summarizes our observations, and discusses the relative performance of
the methods tested. Section 4 discusses possible approaches to avoid the deadlock
phenomenon and presents two extensions to ERA. Finally, Section 5 provides
directions for future research.

2 Background

A Constraint Satisfaction Problem (CSP) is defined by P = (V,D,C) where V
is a set of variables, D the set of their respective domains, and C a set of con-
straints that restricts the acceptable combination of values for variables. Solving
a CSP requires assigning a value to each variable such that all constraints are
simultaneously satisfied, which is in general NP-complete.

In this section, we summarize the principle of the multi-agent based search,
describe the features of our particular application and its modeling as a CSP, and
finally explain how we apply this new search mechanism to solve our application.



2.1 A multi-agent-based method

A multi-agent system is a computational system in which several agents interact
and work together in order to achieve a set of goals. Inspired by swarm intelli-
gence, Liu et al. [15] proposed the ERA algorithm (Environment, Reactive rules,
and Agents), which a search method for solving CSPs. In ERA, every variable
is represented by a single, independent agent. A two-dimensional grid-like envi-
ronment inhabited by the agents corresponds to the domains of variables. The
final positions of the agents in this environment constitute the solution to a CSP.
Each agent moves to the position that is most desirable given the constraints
and the positions of the other agents, regardless of whether this move improves
or deteriorates the quality of the global solution. The search stops when all agents
are in positions that satisfy all applicable constraints.

Whether it is pertinent to rename the variables as agents and view the CSP
as multi-agent system is not the topic of this paper. We simply remain faithful
to the terminology proposed by the original authors [15]. In fact, ERA can be
viewed as a generalization of local search. However, it differs from local search
in some subtle ways as we try to explain below. In local search, moving from
one state to another typically involves changing the assignment of one (or two)
variables, thus the name local search [5]. In ERA, any number of variables can
change positions at each step, each agent choosing its own most convenient
position. Local search uses an evaluation function to assess the quality of a
given state, where a state is a global but possibly inconsistent solution to the
problem. This evaluation function is a global account of the quality of the state,
typically computed as the total number of broken constraints for the whole
assignment. In ERA, every agent applies the evaluation function individually,
typically computing the number of the broken constraints that apply to the
particular agent. The individual values of the evaluation function for the agents
are not combined to give a global account of the quality of the state. Thus,
ERA appears to de-centralize the control for selecting the new positions of the
individual agents. Local search transitions from one state to the next in an
attempt to achieve a global goal. It is thus directly applicable to optimization
problems. In ERA every agent strives to achieve its own local goal. The search
succeeds and stops when every agent is in a legal position. It is thus most suited
to model satisfaction problems. The original paper on this technique encompasses
an extensive comparison with other known distributed search techniques.

2.2 Graduate Teaching Assistants (GTA) problem

Below we give a quick description of this application. A detailed description of
the problem, the constraints, and the solution obtained by backtrack search can
be found in [8]. In this application, we are given a set of graduate teaching as-
sistants (GTAs), a set of courses, and a set of constraints that specify allowable
assignments of GTAs to courses. The goal is to find a consistent and satisfactory
assignment. In this problem, we model the courses as variables and the GTAs
as values. Typically, each semester a pool of 25 to 40 GTAs must be assigned as



graders or instructors to the majority of courses offered during that semester.
In the past, this task has been performed by hand by several members of the
staff and faculty. Tentative schedules were iteratively refined and updated based
on feedback from other faculty members and the GTAs themselves, in a tedious
and error-prone process dragging over 3 weeks. It was quite common that the
final hand-made assignments still contained a number of conflicts and incon-
sistencies, which negatively affected the quality of our academic program. For
example, when a course is assigned a GTA who has little knowledge of the sub-
ject matter, the course’s instructor has to take over a large portion of the GTA’s
job and the GTA has to invest considerable effort in adjusting to the situation.
Moreover, students in the course may receive diminished feedback and unfair
grading. Our efforts in modeling and solving this problem using constraint pro-
cessing techniques have resulted in a prototype system under field testing in our
department since August 2001 [8]. This system has effectively reduced the num-
ber of obvious conflicts, thus yielding a commensurate increase in course quality.
It has also decreased the amount of time and effort spent on making assignments
and has gained the acceptance and approval of our faculty and students.

The CSP model includes a number of unary, binary and non-binary con-
straints that govern the assignments. These constraints model the competence
of the GTAs (a set unary constraints), their availability (usually unary and bi-
nary constraints), and their employment capacity (typically, global constraints).
These constraints must meet the schedule and specifications of the classes, and
the assignment of a GTA must not exceed the total load of the courses to which
he or she is assigned during a semester. In addition to these hard constraints,
candidate GTAs express preferences for specific courses on a scale from 0 to 5
that we try to maximize. In our experience, instances of this application are
always tight and often over-constrained. However, this is not known a priori.
The goal of the GTA problem is to ensure GTA support to as many courses as
possible. Consequently, the problem consists in finding the maximal consistent
partial-assignment, where a solution needs to meet all constraints while maxi-
mizing the number of covered courses, as a primary optimization criterion, and
the quality of the solution in terms of GTA preferences as a secondary one. Here
we need to stress that GTA is not a MAX-CSP [7]. In MAX-CSP, all constraints
are soft and the goal is to maximize the number of satisfied constraints. Thus,
the solution of a MAX-CSP problem may be inconsistent. Neither our applica-
tion nor our modeling of it is a MAX-CSP because all the constraints considered
in the assignments are hard and are not allowed to be broken.

We have collected four real-data instances of the GTA problem from different
academic semesters. These are annotated ‘O’ in Table 1, denoting that the data
are original. These instances may or may not be solvable. Since all the problems
were difficult to solve (and two of them are indeed unsolvable), we boosted the
available resources to transform these problems into solvable ones. To accom-
plish this, we added extra resources—dummy GTAs—into the data set. These
problems are annotated with the mark ‘B’ in Table 1, denoting that the corre-
sponding problem is boosted, one dummy GTA at a time, until we can solve it.



[Data Set [Mark[Domain Size[# variables[Problem Size]

Spring2001b| B 35 69 3.5 x 10179
[®) 26 69 4.3 x 1077
Fall2001b B 35 65 2.3 x 10109
[0) 34 65 3.5 x 10%°
Fall2002 B 33 31 1.2 x 10%7
[0) 28 31 7.3 x 10%F
Spring2003 | B 36 54 1.1 x 10%%
[®) 34 54 5.0 X 1052

Table 1. Problem instances tested.

(The large domain size of the corresponding CSPs causes tremendous thrashing
in systematic backtrack search.)

2.3 ERA model

An ERA system has three components: an Environment (E), a set of Reactive
rules (R), and a set of Agents (A). Each variable is an agent. The position of
an agent corresponds to the value assigned to this variable. The environment
records the number of constraint violations of each agent’s position. An agent
moves according to its reactive rules. Two assumptions are made: (1) all agents
have the same reactive rules, and (2) an agent can only move to positions in its
own domain. In our implementation, agents move in sequence, but the technique
can equally be in an asynchronous fashion.

The environment F is represented as a two-dimensional array that has n rows
corresponding to the number of courses, and has |Dpax| columns where Dpax
is the size of the largest domain. Fig. 1 illustrates the environment E of the
GTA problem. An entry e(7,j) in E refers to a position at row i (representing

course-1 [ (GTAL3) | (GTA2,12) | (GTA4,12) | (GTAS, 15)[ (GTA7.52) |
course-2 : : :
course-3 : : : : |

course-n | (GTA2,9) | (GTAS5,8) [(GTA16, 80)] (GTA21,18)]

Fig. 1. The data structure of environment E.

Agent 4) and column j (representing the index j in the domain of the variable).
The entry e(i, j) stores a list of two values, namely domain value and violation
value. Domain value, e(i, j).value, points to the data structure (i.e., object) of
a GTA of position index j. Violation value, e(i, j).violation, is the number of
broken constraints of the agent in the current assignment. A zero position is
a position for the agent that does not break any of the constraints that apply
to it. The current assignment of the agent is consistent with the other agents’



assignments. Obviously, if agents are all in zero position, then we have a full,
consistent solution. The information in E is updated when an agent changes
position. The goal is to have each agent find its zero position. Liu et al. [15]
define three reactive rules:

1. Least-move: The agent chooses the position with the minimal violation value
and moves to it, breaking ties randomly.

2. Better-move: The agent chooses a position at random. If the chosen position
has a smaller violation value than the current one, then the agent moves to
it. Otherwise the agent keeps its current position.

3. Random-move: With a probability p, the agent randomly chooses a position
to move to. This rule helps out the agent from getting stuck in local optima.

This architecture is reminiscent of that of the GENET algorithm [4]. However,
the two approaches differ in the fact that GENET uses a computationally inten-
sive weight function to assess assignments and a learning mechanism to avoid
local optima.

ERA algorithm. The ERA algorithm works as follows. It builds the environ-
ment F, generates a random position for each agent, and moves the agents to
these positions. Then ERA considers each agent in sequence. For a given agent,
it computes the violation value of each possible position for the agent under
consideration. If the agent is already in a zero position, no change is made.
Otherwise, the agent applies the reactive rules to choose a new position and
moves to it. Then, ERA moves to the next agent. The agents will keep mov-
ing according to the reactive rules until they all reach a zero position or a
certain time period has elapsed. After the last iteration, only the CSP variable
corresponding to agents in zero position are effectively instantiated. The re-
maining ones remain unassigned (i.e., unbounded). We noticed that, in practice,
the agents’ ordering and their concurrency or synchronism do not affect the
performance of the technique because of the agents’ high reactivity. Since the
violation value of each position of an agent under examination is updated at each
run, the agent cannot stay in its current position unless this position remains a
zero position, that is, the position is unchallenged by the remaining agents.

Each iteration of the ERA algorithm, one move per agent, has a time com-
plexity of O(n? X Dyayx). The space complexity is O(n X Dpax)- Liu et al. [15]
demonstrated ERA with two benchmark CSPs: the n-queen and coloring prob-
lems. Both problems have only binary constraints and the instances tested were
solvable. In this paper, we examine the performance of the ERA in solving the
more difficult, non-binary, over-constrained GTA problem. Before we describe
our experiments, we summarize some possible behaviors of an agent and the
rules that govern the behavior. We also review some observations presented by
Liu et al. [15].

Possible behaviors and some observations Liu et al. [15] experimented
with the following behaviors:



— LR is the combination of the least-move and random-move rules. The agent
typically applies least-move and uses random-move with a probability p to
get out of a local optimum.

— BRis the combination of the better-move and random-move rules. It is similar
to LR except that it replaces least-move with better-move.

— BLR is the combination of the better-move, least-move, and random-move
rules. The agent first applies better-mowve to find its next position. If it fails,
it applies LR.

— rBLR: First, the agent applies r times the rule better-mowe. If it fails to find
one, it applies the LR rule.

— FrBLR: The agent applies rBLR for the first r iterations and then it applies
LR, typically r = 2.

Liu et al. [15] further reported the following observations. (1) The cost of better-
move in CPU time is much smaller than that of least-move, which requires eval-
uating all positions. (2) The chance of successfully finding a position to move
to with better-move is quite high. (3) Better-move allows most agents to find
better positions at the first step. (4) FrBLR outperforms rBLR, which in turn
outperforms LR in terms of runtime.

2.4 Owur local search and systematic search

Local search: Our local search (LS) is a hill-climbing search using the min-
conflict heuristic for value selection [16]. It begins with a complete assignment
(not necessarily consistent) and tries to improve it by changing inconsistent
assignments in order to reduce the number of constraint violations. We propa-
gate the effect of consistent assignments over the domains of the variables with
inconsistent assignments. This design decision allows us to handle effectively
non-binary constraints. We implement local search in a greedy fashion in the
sense that we do not backtrack over consistent assignments. Moreover, we ap-
ply a random-walk strategy to escape from local optima [2]. With a probability
(1 — p), we choose the value of a variable using the min-conflict heuristic, and
with probability p we choose this value randomly. Following the indications of
[2], we choose p = 0.02. Further study on the choice of the value of p for the
GTA problem will be reported in [19]. Furthermore, we use random restarts to
break out of local optima.

Systematic search: We utilize systematic search techniques based on depth-
first backtrack search to solve the GTA problem. In our implementation (BT),
forward checking [17] and branch-and-bound mechanisms are integrated into the
search strategy. A full look-ahead strategy would drastically increase the number
of constraint checks while effectively yielding little filtering since the application
has many mutex and global constraints (it is a resource allocation problem).
As depth-first search expands nodes in a search path, we check if the expansion
of the search path can improve on the current best solution. Once the current
best solution cannot be improved, backtrack occurs. In addition, the dynamic



variable and value ordering heuristics are applied in BT. Given that problems
may be over-constrained we slightly modified search not to backtrack when a
domain wipe-out occurs, but only when the current path cannot improve upon
the current incumbent. Our implementation is described in detail in [8].

3 Empirical evaluation of ERA

We tested our implementation on known toy problems and the real-world exam-
ples shown in Table 1. First, we solved the 100-queen! problem and the Zebra
puzzle with different agent behaviors. Then, using FrBLR as the default behavior
of agents, we solved the eight instances of the GTA problem, which include solv-
able and over-constrained cases. We conducted four main experiments: we tested
the behavior of ERA (Section 3.1), compared it to other search techniques (Sec-
tion 3.2), observed the behavior of individual agents (Section 3.3), and identified
a shortcoming of ERA which we call the deadlock phenomenon (Section 3.4).
Observations follow each experiment.

3.1 Testing the behavior of ERA

In the following experiment, we recorded the number of agents reaching zero
position at every iteration as shown in Fig. 2.

Experiment 1 Solve the GTA problem for the data-set Fall2001b using LR,
BLR and FrBLR.

@ @ &
&

FrBLR
—LR
—BLR

iteration

Number of agents in zero position

0 10 20 30 40 50 60 70 80 920 100

Fig. 2. Agents in zero position for Fall2001b.

We report the following observations:

! The n-queen problem is not particularly well-suited for testing the performance of
search. However, we use it only to be on common grounds with Liu et al. [15]. Indeed,
they conducted their tests on the n-queen and the coloring problems, and drew their
conclusions from the n-queen problem.



— The number of agents in zero position does not grow strictly monoton-
ically with the number of iterations, but may instead exhibit a ‘vibration’
behavior. This is contrasted with the ‘monotonic’ behavior of hill-climbing
techniques and illustrates how ERA allows agents to move to non-zero
positions to avoid local optima.

— Fig. 2 shows that the curves for BLR and FrBLR ‘vibrate,” highlighting an
unstable number of agents in zero position across iterations, while LR
quickly reaches a stable value. FrBLR, which combines LR and BLR, achieves
the largest number of agents in zero position.

— After the first few iterations, a large number of agents seem to reach their
zero position with LR than with BLR. However, the problem seems to
quickly become ‘rigid’ and the total number of agents in zero position
becomes constant.

In the GTA problem, as with the toy problems, FrBLR seems to yield the best
results. We adopt it as the default behavior for all agents.

3.2 Performance Comparison: ERA, LS, and BT

In order to gather an understanding of the characteristics of ERA, we compared
its performance with that of two other search strategies we previously imple-
mented. The first strategy is a systematic, backtrack search (BT) with dynamic
variable ordering fully described in [8]. The second strategy is a hill-climbing,
local search (LS) to be documented in [19]. LS is a combination of constraint
propagation to handle non-binary constraints and the min-conflict random walk
algorithm as presented in [2].

As stated in Section 2.2, the GTA problem is over-constrained. We try to
find the assignment that covers the most tasks and, for an equal solution length,
one that maximizes the arithmetic or geometric average of the preference values
of the assignments. In all three searches (i.e., ERA, BT, and LS), we store the
best solution found so far and update it only when the quality of a new solution
exceeds that of the one currently stored. As a result, the search behaves as an
anytime algorithm.

Experiment 2 Solve the GTA problem for the real-world data of Fall2001b,
Fall2002 and Spring2003 using ERA, BT search [8], and a hill-climbing, local
search technique [19]. Since all the problems were difficult to solve (and two
of them are indeed unsolvable), we boosted the available resources to trans-
form these problems into solvable ones. To accomplish that, we added extra
resources—dummy GTAs—into the data set. The results are shown in Tab. 2
and Figs. 3 and 4.

We adopted the following working conditions:

— The quality of the solution reached by BT search did not improve after
the first 20 seconds, even when we let the search ran for hours or days. A
careful observation of the backtracking showed that the shallowest tree-level



reached was as deep as 70% of the number of variables (i.e., the maximum
depth of the tree). This situation did not improve much over time. This
can be traced to the large domain size of the variables in this application,
which systematically prevents a large portion of the search space from being
explored at all. This problem could not be avoided even by using randomized
variable ordering.

The maximum iteration number for LS and ERA is 200. This corresponds
to a few minutes of run time for LS and a couple of minutes of ERA.

We increased the number of dummy GTAs, one at a time, until one of the
search techniques can find a solution. The solvable instance thus obtained
may have more GTAs than are actually needed.

The ratio of total capacityand total load (shown in column 7 in Tab. 2)
is an indicator of the tightness of the problem. When the ratio is less than
1, the instance is over-constrained and guaranteed not solvable. Otherwise,
it may or may not have a full solution.

compared the search techniques according to five criteria:

Unassigned courses: the number of courses that are not assigned a GTA
(col. 8, 13, and 18 in Tab. 2). The primary goal is to minimize this value.
Solution quality: the geometric average of the preferences, with values € [1, 5]
(col. 9, 14, and 19 in Tab. 2). A larger value indicates a better solution.
Unused GTAs: the number of GTAs not assigned to any task (col. 10, 15,
and 20 in Tab. 2). This value is useful to analyze why certain resources are
not used by the search mechanism. This constitutes useful feedback in the
hiring process.

Available resources: the cumulative value of the remaining capacity of all
GTAs after assignment (col. 11, 16, and 21 in Tab. 2). This provides an
estimate of whether a search strategy is wasteful of resources.

CC: the number of constraint checks, counted using the convention of Bac-
chus and Van Beek [1] (col. 12, 17, and 22 in Tab. 2).

report the following observations:

Only ERA is able to find a full solution to all solvable problems (column
18 of Tab. 2). Both BT and LS fail for all these instances. In this respect,
ERA clearly outperforms the other two strategies and avoids getting stuck
in useless portions of the search space.

When the ratio of total capacity to total load is greater than 1 (the problem
may or may not be solvable), ERA clearly outperforms BT and LS. Con-
versely, when the ratio is less than 1 (problem is necessarily over-constrained),
ERA’s performance is the worst, as shown in Fig. 3. Indeed, we make the
conjecture that ERA is not a reliable technique for solving over-constrained
problems.

On average (see Fig. 4), LS performs much fewer constraint checks than
ERA, which performs fewer constraint checks than BT.

This feature of LS is useful when checking constraints (e.g., non-binary con-
straints), but is a costly operation.
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Table 2. Comparison between BT, LS, and ERA. (O/B indicates whether the instance

is original or boosted. CC is # of constraint checks.)
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Fig. 3. Unassigned courses Fig. 4. Constraint checks

— ERA leaves more GTAs unassigned than BT or LS (col. 10, 15, and 20 in

Tab. 2), which raises concerns about its ability to effectively exploit the
available resources.
In particular, for Spring2001b (O), 8 GTAs remain unused. This alarming sit-
uation prompted us to closely examine the solutions generated, which yielded
our identification of the deadlock phenomenon discussed in Section 3.4. Fi-
nally, we compared the behavior of ERA on solvable and unsolvable prob-
lems in terms of the number of agents in zero position per iteration. The
solvable problems are: Spring2001b (B), Fall2001b (B/O), Fall2002 (B), and
Spring2003 (B/O) (Fig. 5). The unsolvable ones include Spring2001b (O)
and Fall2002 (O) (Fig. 6).

— Neither the basic LS nor ERA (i.e., without restart strategies) includes a
mechanism for improving the quality of the solution in terms of GTA pref-
erences, which is the secondary optimization criterion. Indeed, the quality of
the solutions found by BT is almost consistently higher. However, this length



of the solutions found by ERA on solvable instances, which is the primary
optimization criterion, is significantly larger to both BT and LS.

— Figs. 5 and 6 show that the performance of ERA is more stable when solving
solvable problems than when solving unsolvable problems.

spring 20015 (B)

fall 20016

spring 2003

8304 fall2002(®)

20 iteration

Fig. 5. ERA performance on solvable
problems

spring 2001b (0)

# agents in zero position

fall 2002 (0)
iteration

1 20 39 58 77 % 115 134 153 172 191

Fig.6. ERA performance on unsolv-
able problems

3.3 Observing behavior of individual agents

Tracking the positions of individual agents at various iterations, we observed
the three types of agent movement shown in Fig. 7. In this figure, we used the
index of the agent’s position to indicate its assigned value. The three types of

movements are the following:
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Fig. 7. Types of agent movement

— Variable: the agent changes its position relatively frequently and fails to find

its zero position.

— Stable: the agent rarely changes its position (once or twice).



— Constant: the agent finds a zero position at the beginning of the search,
and never changes it.

Experiment 3 We set the maximum number of iterations to 500 and tracked
the positions of agents over the entire data set, grouped into solvable and un-
solvable instances.

We observed the following:

— In solvable instances, most agents are stable, a few are constant, and none
of the agents is variable.

— In unsolvable instances, most agents are variable, a few are stable, and none
of the agents is constant.

3.4 The deadlock phenomenon

On our two unsolvable instances of Tab. 2 (i.e., Spring2001b (O) and Fall2002 (0)),
ERA left some tasks unassigned (col. 18) and some resources unused (col. 20),
although, in principle, better solutions could be reached. By carefully analyz-
ing these situations, we uncovered the deadlock phenomenon, which is a major
shortcoming of ERA and may hinder its usefulness in practice. It is not our claim
that the deadlock phenomenon is unique to ERA. It may also show up in other
search algorithms. However, the fact that ERA exhibits this shortcoming was
not noticed earlier.

Experiment 4 With the Spring2001b (O) data, we examined the positions of
each agent in the state corresponding to the best approximate solution found,
and analyzed the allocation of resources to tasks.

The best approximate solution for this problem was found at iteration 197, with
24 courses unassigned and 8 GTAs unused. The total number of courses in this
problem is 65. We observed that the unsatisfied courses can actually be serviced
by the available, unused GTAs. ERA was not able to do the assignment for
the following reason. There were several unsatisfied agents (i.e., courses) that
chose to move to a position in their respective rows corresponding to the same
available GTA, while this GTA could only be assigned to as many agents as
its capacity would allow. This situation resulted in constraints being broken
and none of the agents reaching a zero position. As a consequence, although
agents moved to that position, none could be assigned that position, and the
corresponding GTA remained unassigned. We illustrate this situation in Fig. 8.
Each circle corresponds to a given GTA. Note that there is exactly one circle per
GTA. Each square represents an agent. The position of an square on the circle is
irrelevant and only useful for visualization purposes. There may be zero or more
squares on a given circle. Blank squares indicate that the position is a zero
position for the agent; these will yield effective assignments. The filled squares
indicate that although the position is the best one for the agent, it results in some
broken constraints. Thus it is not a zero position, and the actual assignment
of the position to the agent cannot be made. The circles populated by several
filled squares are GTAs that remain unused.



O agentin zero position

B agentin deadlock

# total agents : 65
# agents involved in deadlock: 24
# unused GTAs: 8

Fig. 8. Deadlock state

Definition 1. Deadlock state: When the only positions acceptable to a subset
for agents are mutually exclusive, a deadlock occurs that prevents any of the
agents in the subset from being allowed to move to the requested position.

None of the variables in a deadlock is instantiated, although some could be.
Further, a deadlock causes the behavior of ERA to degrade. When some agents
are in a deadlock state, one would hope that the independence of the agents
would allow them to get out of the deadlock (or remain in it) without affecting
the status of agents in zero position. Our observations show that this is not
the case. Indeed, ERA is not able to avoid deadlocks and yields a degradation
of the solution in the sense that it does not maximize the number of courses
satisfied. Indeed, subsequent iterations of ERA, instead of moving agents out of
deadlock situations, moved agents already in zero position out their positions
and attempt to find other zero positions for them. The current best solution
is totally destroyed, and the behavior of the system degrades.

This problem was not reported in previous implementations of ERA, likely
because they were not tested on over-constrained cases. Further, it seriously hin-
ders the applicability of this technique to unsolvable problems. It is important
that ERA be modified and enhanced with a conflict resolution mechanism that
allows it to identify and solve deadlocks. We discuss this issue in Section 4.

3.5 Discussion

From observing the behavior of ERA on the GTA problem, we conclude the
following;:



— Better-move vs. least-move: A key point in iterative-improvement strategies
is to identify a good neighboring state. In ERA, this is achieved by the
reactive rules. In Minton et al. [16], this is the min-conflict heuristic. We
noticed that better-move provides more opportunities to explore the search
space than least-move does, and avoids getting stuck in local optima. With
least-mowve, an agent moves to its best position where it stays. This increases
the difficulties of other agents and the complexity of the problem, which
quickly becomes harder to solve.

Reactive behaviors: Different behaviors significantly affect the performance of
ERA. We found that FrBLR results in the best behavior in terms of runtime
and solution quality. At the beginning of the search, better-move can quickly
guide more agents toward their zero position. Then least-move prevents
drastic changes in the current state while allowing agents to improve their
positions. Finally random-mowve deals effectively with plateau situations and
local optima.

Stable vs. unstable evolution: As highlighted in Fig. 5 and 6, the evolution
of ERA across iterations, although not necessarily monotonic, is stable on
solvable problems and gradually moves toward a full solution. On unsolvable
problems, its evolution is unpredictable and appears to oscillate significantly.
This complements the results of Liu et al. [15] by characterizing the behavior
of ERA on over-constrained problems, which they had not studied.

From comparing systematic, local and multi-agent search on the GTA prob-

lem, we identify three parameters that seem to determine the behavior of search,
namely (1) the control schema, (2) the freedom to undo assignments during
search, and (3) the way conflicts are solved and deadlocks broken. Below, we
discuss the behavior of the three strategies we tested in light of these parameters.
We expect this analysis to be generalizable beyond our limited considerations.
Our analysis is summarized in Tab. 3.

Goal Actions
Control schema Undoing assignments |Conﬂict resolution
Local Yes, anytime Non-committal
ERA ||+ Immune to local optima|+ Flexible — Deadlock
— May yield instability |+ Solves tight CSPs — Shorter solutions
Global No, greedy approach Heuristic

LS ||+ Stable behavior + Quickly stabilizes + Longer solutions
— Liable to local optima |— Fails to solve tight CSPs even with
randomness & restart strategies
Systematic Only when backtracking Heuristic
BT ||+ Stable behavior + Quickly stabilizes + Longer solutions
— Thrashes — Fails to solve tight CSPs even with

backtracking & restart strategies

Table 3. Comparing the behaviors of search strategies in our implementation.




Control schema: Global vs. local. In ERA, each agent is concerned with,
and focuses on, achieving its own local goal—moving to a minimal violation-
value position. This increases the ‘freedom’ of an agent to explore its search
space, which allows search to avoid local optima. As a result, the ERA has an
inherent immunity to local optima. The global goal of minimizing conflicts of a
state is implicitly controlled by the environment F, through which the agents
‘communicate’ among each other. This communication medium and local control
schema of ERA are effective when the problem is solvable, but they fail when
problems are over-constrained. Indeed, on unsolvable instances, ERA is unstable
and causes oscillations.

This decentralized control should be contrasted with the centralized control
of local search where the neighboring states are evaluated globally by a cen-
tralized function. Global control used in LS leads to a stable performance: the
movement to a successor state is, in general, allowed only when the neighboring
state reduces the global cost, such as the total number of broken constraints in
the state. However, this kind of control overly restricts the movement of agents
and the the search easily gets trapped in local optima, which is unlikely to be
overcome even with random restarts [12].

In backtrack search, alternative solutions are examined in a systematic way.
Generally speaking, we either expand a partial solution or we chronologically
consider immediate alternatives to the last decision. Usually, we record the best
solution found so far as an incumbent and update it only when a better solution
is found. As a result, the quality of solutions improves with time and the search
is typically stable. However, thrashing is the price to pay for the stability and
completeness of search. We tested both heuristic and stochastic backtrack search
[10] and found that backtracking never goes beyond the third of the depth of
the tree on our problems. Random restart strategies and credit-based search are
ways to avoid this thrashing, but they sacrifice completeness.

Freedom to undo assignments. Among the three strategies we tested so far
(we are testing others), only ERA was able to solve our hard, solvable instances.
This ability can be traced to its ability to undo assignments.

In ERA, an agent can undo its assignment as needed, even if it is a consis-
tent one. In fact, no agent may remain in a given position unless this position
is acceptable to all other agents, that is, it remains a zero position across
iterations. This feature seems to be the major reason why ERA is able to solve
successfully large, tight problems that resisted the other techniques we tested
(i-e., the solvable instances of Tab. 2 were only solved by ERA).

In contrast, in both systematic and hill-climbing search, a value is assigned
to the variable that claims it first, on a first-come, first-served basis. Our imple-
mentation of local search (a hill-climbing strategy with a combination of con-
straint propagation and a min-conflict heuristic for value selection) does not
undo consistent assignments. However, more generally, in backtrack search and
LS, assignments can be undone using backtracking and random-restart strate-



gies, respectively. In our experiments, both backtracking and random-restarts
failed to solve tight instances, due to the sheer size of the search space.

Conflict resolution and deadlock prevention. We identify two main ap-
proaches for search to deal with conflicts: (1) heuristic, based on some priority
such as a ‘first-come, first-served,’ least commitment, fail-first principle, or using
user-defined preferences, and (2) non-committal, where conflict sets are merely
identified and handed either to the user or to a conflict resolution procedure [3].

When it is not able to solve a conflict (e.g., a resource contention in the case
of a resource allocation problem), ERA adopts a cautious approach and leaves
the variables unassigned. This yields the deadlock phenomenon encountered in
over-constrained cases, introduced in Section 3.4 and discussed in Section 4.
We believe that the non-committal strategy is more appropriate in practical
settings because it clearly delimits the sources of conflict and makes them the
responsibility of a subsequent conflict resolution process. We consider this feature
of ERA to be particularly attractive. Indeed, conflict identification is a difficult
task (perhaps NP-hard) and ERA may constitute the first effective and general
strategy to approach this problem.

Both backtrack search and LS operate in a more resolute way: they heuristi-
cally assign values to as many variables as possible. As a result, when maximizing
the solution length, as in the GTA problem, they end up finding solutions that
are more competitive (i.e., longer) than ERA.

4 Dealing with the deadlock

While ERA is not a complete procedure, we were puzzled by its ability to quickly
solve tight problems. However, in over-constrained problems, some agents may
be always prevented by other agents from reaching a zero position. One can
think of the deadlock phenomenon as a powerful feature of ERA since it allows us
to identify and isolate conflicts. Conversely, one could think of it as a shortcoming
of ERA since, in over-constrained cases, it yields shorter solutions than LS or
BT. We identify four possible avenues for dealing with deadlocks.

1. Direct communication and negotiation mechanism: In ERA, agents exchange
information indirectly, through the environment E, and have no explicit com-
munication mechanism. The information that is passed is a summary of the
state of the environment. Agents are not able to recognize each other’s indi-
vidual needs and thus are unable to establish coalition. One could investigate
how to establish more effective, informative communications among agents,
as in a truly multi-agent approach.

2. Hybridization algorithms: When a deadlock occurs in ERA, we could use
the solution found as a seed for another search technique such as LS or BT.
One could even imagine a portfolio of algorithms where various solvers, with
various features and weaknesses, cooperate to solve a given difficult problem.
We are working in this direction.



3. Global control: The decentralized control of ERA enables an agent to pur-
sue the satisfaction of its own, local goal. However it also undermines the
ability of the system to achieve cooperatively a common global goal (when
such a goal exists but is not Pareto optimal). In Section 4.1 we investigate
how to enhance ERA with global control and examine the advantages and
shortcomings of our proposed strategy.

4. Conflict resolution: An over-constrained problem by definition, has no solu-
tion. Conflict resolution is thus necessarily heuristic and problem-dependent
[13]. There are two main approaches to conflict resolution:

— Interactive: In an interactive setting, the identified conflicts are no-goods
that can be presented to the users and allow them to integrate their
own judgment for conflict resolution. This is the case in our application:
most conflict resolution is currently done interactively, which allows the
integration of ‘unquantifiable’ constraints into the solutions.

— Awutomatic: Soft constraints, preferences, and rules to relax constraints
could be included in the model in order to solve conflicts automatically.
Once a given conflict is identified and solved, a new problem is generated
based on the modification of the initial one, and the problem solver is run
on this new problem. This process repeats until all conflicts are solved.

Below we investigate two directions to address deadlock by adding global
control to ERA (Section 4.1) and by heuristic conflict resolution (Section 4.2).

4.1 Enhancing ERA with global control

Inspired by local search, we propose to enhance ERA with global control in order
to avoid deadlocks. To this end, we add the following reactive rule to the ERA
system. After selecting a position to move to that improves its own local goal (this
is done according to the reactive rules of Section 2.3), the agent also checks the
effect of this move on the global goal, measured as the total number of violations
of the entire state. Indeed, the agent’s new position may increase the number of
violations for one or more other agents. Only when it does not deteriorate the
global goal does the agent effectively execute the considered move.

Experiment 5 Solve the GTA problem for the data set of Spring2001 (O), an
over-constrained instance, and that of Fall2001 (O), a solvable instance, using
the original and then the modified ERA algorithm. We choose FrBLR as the
default behavior and observe the number of agents in zero position.

On the over-constrained data set, the new rule we added for global control
was able to reduce the deadlock but not eliminate it completely. Indeed, we
observed that the modified ERA was able to reach better solutions than the
original ERA; however, the solution was still not as good as the one reached by
local search. For the solvable data set, the modified ERA was quickly trapped in
a local optimum, similar to local search. Thus, our attempt to add global control
to ERA fails. On one hand, we are not able to reach as good solution as local



search, and on the other hand, we inherit the shortcoming of local search. It is
important to investigate hybrid strategies that combine the benefits of various
search techniques without inheriting their shortcomings.

4.2 Conflict resolution

Here we discuss two automatic conflict resolution procedures for ERA. The first
one is based on introducing dummy values in the CSP, and the second on using
the violation values obtained by ERA as a priority criterion.

1. Add dummy resources one by one, and attempt to solve the problem again.
(The agents given the dummy resources remain unassigned in reality.) We im-
plemented this strategy for the data sets Spring2001b (O) and Fall2002 (O)
(see Rows (b) and (f) in Tab. 2), yielding the data sets shown in Rows (a)
and (e) in Tab. 2. We noticed that ERA was able to solve the problem while
the two other search strategies failed. Indeed, there are not enough GTAs
to solve these data sets. Boosting them by adding ‘dummy’ values, one at a
time, allows ERA to solve these problems. After a complete solution is ob-
tained, we remove the dummy values. We noticed that this technique allows
us to generate partial solutions significantly better than those obtained by
LS and BT, which failed to solve even the boosted instances.

2. Given a deadlock (described here as a set of conflicting agents and the unique
index of their corresponding positions), two configurations are possible: ei-
ther all agents have the same value for the position or they have different,
non-zero values. The situation is illustrated in Fig. 9. A circle represents
the index of the conflicting positions, a square represents an agent, and the
value within the square is the violation value for the position. The agents
located on a circle cause a deadlock. In the first case, we are in a situation in
which the constraints and preferences in the problem yielded positions that
have ezactly the same values for the variables in a deadlock. In other words,
ERA does not have enough information to discriminate among the variables
involved in the deadlock. Thus, an arbitrary, greedy assignment of the posi-
tion to any of the agents in the deadlock is the only mechanical way to solve
the deadlock. We propose to solve Case 2 as follows. We sort the conflicting

Fig. 9. Two cases of a deadlock.

agents in an increasing order according to their violation value. We examine
the available position for assignment to the first agent in the priority queue,



breaking ties randomly, and check whether this does not yield any inconsis-
tency in the entire problem. If any inconsistency is encountered, we remove
the agent from the queue. If not, then we assign the position to the agent,
and we update the violation values for the remaining agents. The process is
repeated until all agents in the deadlock have been examined. We did not
test this technique because it seemed more complex than the previous one.

5 Future research directions

We carried out our experiments on the toy problems (i.e., the 100-queen problem
and the Zebra puzzle), and on real-world instances of the GTA problem. While
our observations seem generalizable beyond these problems, we still need to val-
idate them on randomly generated and other real-world CSPs, which we are
currently doing. In particular, working on the GTA problem, which is a resource
allocation problem, allowed us to explain the deadlock as resource contention. It
is not clear what a deadlock would mean in CSPs that model other practical ap-
plications or even in (over-constrained) random CSPs. We are currently carrying
out tests in this direction. The general methodology of [11,12] for characterizing
the behavior of randomly-generated problems will be useful to this end.

In this paper, we showed that ERA is particularly effective at handling tight,
solvable problems that resist other search techniques. However its shortcomings
with over-constrained problems (i.e., its instability and the degradation of the
approximate solutions it finds) significantly undermine its usefulness in practice.
We plan to address this problem from the following perspectives:

1. Enhance ERA with a mechanism to handle optimization problems, where two
or more consistent assignments can be further differentiated by a preference
criterion.

2. Develop and test strategies to address deadlocks, perhaps through endowing
agents with non-uniform reactive rules. Note that the ability of ERA to
isolate the deadlock is a significant advantage.

3. Experiment with search hybridization techniques with LS, which can reach
and maintain a good quality approximate solution within the first few iter-
ations.

4. Conduct similar experiments on other search techniques such as randomized
systematic search [10], the squeaky wheel method [14], and market-based
techniques [18], in a setting similar to the ‘algorithm portfolios’ of [9].
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