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Abstract

In this paper, we address the task of solv-
ing the general Temporal Constraint Satisfaction
Problem (TCSP). We report the integration of
three approaches to improve the performance of
the exponential-time, backtrack search (BT-TCSP)
proposed by Dechter et al. [1991] for this purpose.
The first approach consists of using a new effi-
cient algorithm ( � STP) [Xu and Choueiry, 2003a]
for solving the Simple Temporal Problem (STP),
an operation that must be executed at each node
expansion during BT-TCSP. The second approach
improves BT-TCSP itself by exploiting the topol-
ogy of the temporal network. This is accomplished
in three ways: finding and exploiting articulation
points (AP), checking the graph for new cycles
(NewCyc), and using a new heuristic for edge or-
dering (EdgeOrd). The third approach is a filtering
algorithm, � AC, which is used as a preprocessing
step to BT-TCSP, and which significantly reduces
the size of the TCSP [Xu and Choueiry, 2003b]. In
addition to introducing two new techniques, New-
Cyc and EdgeOrd, this paper discusses an exten-
sive evaluation of the merits of the above three ap-
proaches. Our experiments on randomly generated
problems demonstrate significant improvements in
the number of nodes visited, constraint checks, and
CPU time.

1 Background and motivation
A Simple Temporal Problem (STP) is defined by a graph ������	��
�����

where
�

is a set of vertices � representing time
points;



is a set of edges ����� � representing constraints be-

tween two time points � and � ; and


is a set of constraint
labels for the edges, Fig. 1 (left). A constraint label
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Figure 1: Left: STP. Right: TCSP.

edge � ��� � is a unique interval � � ����� , � ��� �"! , and denotes a
constraint of bounded difference �$# (��%&� � # � . A Tem-
poral Constraint Satisfaction Problem (TCSP) is defined by
a similar graph � =

���	��
�����
, where each edge label

 ��� � =')(+*-,/.�0� �1(2*43�.�5� , 67686 , (+*:9;.�5�=< is a set of disjoint intervals denoting a
disjunction of constraints of bounded differences between �
and � , Fig. 1 (right). We assume that the intervals in a label
are disjoint and ordered in a canonical way. The following is
a typical example:

Tom has class at 8:00 a.m. He can either make
breakfast for himself (10-15 minutes), or get some-
thing to eat from a local store (less than 5 minutes).
After breakfast (5-10 minutes), he goes to school
either by car (20-30 minutes) or by bus (at least
45 minutes). Today, Tom gets up between 7:30 and
7:40..

We wish to answer queries such as: “Can Tom arrive at school
in time for class?”, “Is it possible for Tom to take the bus?”,
“If Tom wanted to save money by making breakfast for him-
self and taking the bus, when should he get up?”, and so
on. This temporal problem can be represented as a tempo-
ral graph.

Let >@? be a reference time-point (e.g., 6:00 am), > , the
time point Tom gets up, > 3 the time point he starts his break-
fast, >BA the time point he finishes it, and >BC the time point he
arrives at the school. Fig. 2 shows the temporal graph of this
TCSP.
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Figure 2: A TCSP example.

Dechter [2003] described a backtrack search procedure
(BT-TCSP) for solving a TCSP, which is an NP-hard prob-
lem. To this end, the TCSP is expressed as a ‘meta’ Con-
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Figure 3: The search tree for the example of Fig. 2.

straint Satisfaction Problem (meta-CSP). The variables of the
meta-CSP are the edges � ��� � of � . Their number depends on
the density of the temporal graph. The domain of a variable
� ��� � is its label,

 ��� � = ')( *-,/.�0� ,
( *43�.�0� , 67676 , ( *:9;.�0� < . A partial solution

is a set
' � � �5� ��(2* � .�5� � < of variable-value pairs (vvps) that form a

consistent STP, which is a global constraint. A complete so-
lution is a consistent STP in which all the edges of � appear.
The minimal network of the TCSP is the union of the mini-
mal networks of all complete solutions, and solving the TCSP
requires finding all the solutions of the meta-CSP. Each node
in the tree generated by BT-TCSP is an STP > � that has


��
edges, a subset of the edges of the original network (


����$

),

each labeled with a unique interval from its domain. When > �
is consistent, the node is expanded by adding to > � an edge
from

��
 % 
 � � labeled with an interval from its domain. This
yields a new STP that is checked again for consistency. Fig. 3
illustrates the tree corresponding to the example of Fig. 2,
where edges are considered in their lexicographical order.

In this paper, we combine the following techniques to im-
prove the performance of BT-TCSP, and demonstrate their ef-
fectiveness on randomly generated problems:

1. Every node in the tree is an STP that needs to be solved
before the search can proceed. Hence, the performance
of a TCSP solver depends critically on that of the STP
solver. We compare for the first time the performance
of various known STP solvers, including a new one,� STP, that we proposed in [Xu and Choueiry, 2003a].
We show that it outperforms all others. Note that the per-
formance of the STP solver does not affect the number
of nodes visited in BT-TCSP.

2. One well-known technique to improve the performance
of a CSP is to decompose it into sub-problems us-
ing its articulation points [Even, 1979; Freuder, 1985;
Dechter et al., 1991], and to solve the sub-problems in-

dependently. We provide for the first time an empirical
evaluation of the effectiveness of this technique.

3. Further exploiting the topology of the temporal network,
we show how to avoid running an STP-solver by check-
ing the existence of new cycles (NewCyc) in the network
as edges are added along a given path in the tree. For
the example shown in Fig. 3, the first four consistency
checks are unnecessary because there are no cycles in
the respective networks and the corresponding STPs are
always consistent.

4. Another way to improve the performance of BT-TCSP is
to find a good variable-ordering heuristic for the search.
This corresponds to a sequencing of



, the edges of � ,

as they are added along a given path in the tree. A good
sequence reduces unnecessary backtracking and also the
number of constraint checks. We introduce a new order-
ing heuristic (EdgeOrd) that exploits the adjacency of
existing triangles in the graph to determine the ordering
of their edges in the tree.

5. We reduce the domains of the variables of the meta-
CSP by using the efficient filtering algorithm, � AC, de-
scribed in detail in a companion paper [Xu and Choueiry,
2003b]

The contributions of this paper can be summarized as follows:

1. A new technique for saving constraint checks (NewCyc)
and a new ordering heuristic (EdgeOrd).

2. The combination of the above listed techniques (i.e., an
STP-solver, AP, NewCyc, EdgeOrd, and � AC) to solve
the TCSP.

3. Empirical evaluation and analysis of the effectiveness of
these techniques and their combinations to demonstrate
their significance.
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This paper is structured as follows. Section 2 reviews the var-
ious STP-solvers we used. Section 3 discusses the three im-
provements that exploit the topology of the temporal network.
Section 4 summarizes a filtering algorithm that is more thor-
oughly discussed in [Xu and Choueiry, 2003b]. Section 5 de-
scribes our experiments and observations. Finally, Section 6
concludes this paper.

2 Algorithms for solving the STP
TCSP is NP-hard and is solved with backtrack search. Every
node expansion in the search tree needs to check the con-
sistency of an STP. Thus a good STP solver is critical for
solving the TCSP. We test the following STP solvers: Di-
rected Path Consistency DPC [Dechter and Pearl, 1988], Par-
tial Path Consistency DPC [Bliek and Sam-Haroud, 1999],
and Triangle-STP � STP [Xu and Choueiry, 2003a].

2.1 Solving the STP using Directional Path
Consistency (DPC)

A basic algorithm to solve an STP is the Floyd-Warshall al-
gorithm (F-W), which computes all-pairs shortest-paths in a
distance graph [Cormen et al., 2001]. F-W guarantees consis-
tency, minimality, and decomposability and has a worst-case
complexity of � ��� A � . Montanari showed that F-W is a spe-
cial case of the Path Consistency (PC) algorithm [Montanari,
1974]. Dechter et al. propose the Directed-Path Consistency
(DPC) algorithm. This algorithm is never more costly than
F-W, runs in � ��� A � , and can determine the consistency of an
STP in � ������� ��	�� 3 �

, where
��� ��	��

is the induced width of
the graph along a given ordering

	
. DPC determines the con-

sistency of the STP, but does not necessarily yield the mini-
mal and decomposable network. Due to the fact that only the
consistency of an STP matters during BT-TCSP, we use DPC
instead of F-W because of its lower cost.

2.2 Solving the STP using Partial Path
Consistency (PPC)

Bliek and Sam-Haroud introduced Partial Path-Consistency
(PPC), an algorithm applicable to general CSPs (and not re-
stricted to temporal networks) [1999]. PPC works on a tri-
angulated graph, unlike the PC algorithm which requires a
complete graph. Further, Bliek and Sam-Haroud showed that
when the constraints are convex, the PC algorithm (operating
on the complete graph) and the PPC algorithm (operating on
the triangulated graph) yield equivalent results: the same la-
beling for the edges common to both graphs and the minimal-
ity and decomposability of the STP. PPC never requires more
constraint checks than PC, which is advantageous when the
(triangulated) graph is sparse. This is particularly attractive
in BT-TCSP, which requires solving an STP at each node.
PPC requires that the graph be triangulated, which may re-

sult in new edges being added to the graph. We triangulate the
temporal network using the algorithm devised in [Kjaerulff,
1990]. We represent the new edges as universal constraints in
the original constraint graph and set their label to

� %�
 � 
 � .
In the tree generated by BT-TCSP, each node represents an

STP whose graph adds exactly one edge to the graph of the
parent of the node (and must be triangulated to be used by

PPC). Assuming a static ordering in the tree, the total number
of graphs that appear along any given complete path is exactly
equal to the number of edges in the original problem. Further,
all nodes at a given level of the search tree have the same
graph (only the edge labelings may vary). Thus, under static
ordering, the number of possible graphs considered during
the BT-TCSP process is exactly equal to the total number of
edges in the temporal network.

We devise two methods for accessing the triangulations
of the STPs need in given a static ordering, Fig. 4. In the
first method, Plan A, we pre-compute all the STPs needed in
search, triangulate them, and store their triangulations for use
during search. In the second method, Plan B, we triangulate
the entire network only once. We, then induce, from the tri-
angulated graph, the subgraph whose vertices form the STP
under consideration. Since the original graph is triangulated,
each induced subgraph is also triangulated.
� Plan A: Given a variable ordering

	
, the list of the graphs

considered during BT-TCSP is generated as shown in
Fig. 4 (left). Push adds an item to a list, Reverse
reverses a list, and Triangulate triangulates a graph. We
use the �� � element of TriSubGs list as the triangulated
subgraph for the node at the �� � level of the tree.

� Plan B: Here we compute the triangulated graph only
once and induce from it the subgraph needed at every
step. Fig. 4 (right) shows the algorithm where �  is the
triangulated graph of the original network and � � is the
subgraph considered at level � # � #�� 
 � in the search.
Note that this technique may end up considering denser
graphs than necessary, which increases the cost of solv-
ing the STP.

Our experimental results show that Plan A always outper-
forms Plan B in terms of the number of constraint checks
and CPU time. Note that neither of these two plans affects
the number of backtracks (the number of nodes visited) in
BT-TCSP.

2.3 � STP algorithm used with TCSP algorithm

� STP algorithm can output the same minimal network as
F-W and PPC. It uses the idea of triangulation and considers
the temporal graph as composed of triangles instead of edges.
Constraint propagation is ‘triangle-based’ rather than ‘edge-
based.’ As a finer version of PPC, � STP can find the mini-
mal network with less cost than F-W and PPC. When density
is low, � STP is even cheaper than DPC, which does not guar-
antee the minimal network. Similar to PPC, the pre-requisite
condition for � STP is to first triangulate the temporal graph.
We have introduced above two plans to obtain triangulated
subgraphs in the previous subsection. We will use Plan A for
its lower cost in practice.

When solving a TCSP with search, the STP examined at
each node in the search tree is a subgraph of the original
TCSP. Thus the STPs we need to check always have lower
density than the original TCSP, Since Thus the outstanding
performance of � STP under low density makes it even more
attractive to use for solving the TCSP.
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All-triangulated-subgraphs ( ��� , � )
��� nil
TriSubGs � nil� ��� all edges in ��� using ordering �
For 	�
 � � do

Push( 	 , � )
Push(Triangulate( � ), TriSubGs)

Return Reverse(TriSubGs)

Induced-subgraphs ( ��� , �� )� � � edges of � �� �� all nodes 
���� �� nil
Forall 	 �� � 
 � �

When ��
 �  and ��
 � 
Then Push( 	 �� � ,

�  )
Return

� 

Figure 4: Left: List of triangulated subgraphs given an ordering. Right: Inducing a subgraph from the triangulated original graph.

3 Exploiting the topology of the constraint
network

We propose three techniques topology-based techniques to
enhance the performance of search. While the first technique
is applied prior to search to decompose the problem into in-
dependent components, the last two are intertwined with the
search process.

3.1 Decomposition using articulation points
The existence of articulation points in the graph of the tem-
poral network can be used to decompose the network into its
biconnected components, which can be solved independently.
Finding the articulation points can be done in � � � 
 � � [Cor-
men et al., 2001]. This method provides an upper bound to
the search effort in the size of the largest biconnected com-
ponent [Freuder, 1985]. It can effectively reduce the number
of constraint checks in BT-TCSP and the number of nodes
visited in its tree. A solution to the entire network is a combi-
nation of any of the solutions of the biconnected components.
The total number of solutions is: � ����� � � ,"! � , where ! � is
the number of solutions for component � . This conjunctive
decomposition of the temporal network [Freuder and Hubbe,
1995] allows us to solve the sub-problems in parallel, as in a
multi-agent system. Articulation points usually appear only
when the density is low or when the TCSP has a special topol-
ogy. Note that even in the absence of articulation points, we
could ‘induce’ such decompositions by removing some edges
of the graph, in a manner similar to the cycle-cutset method of
Dechter and Pearl [1987]. We have implemented the mecha-
nism for finding and using existing articulation points but not
yet explored how to induce their existence.

3.2 New cycle check
The inconsistency of an STP is detected by the existence of
a negative cycle in its distance graph. When the graph of an
STP has no cycles, the STP is necessarily consistent1.

Proposition 3.1. A tree-structured constraint network is nec-
essarily globally consistent.

In BT-TCSP, nodes are expanded by adding one edge at
a time. When the addition of a new edge does not yield a
new cycle in the graph, a consistent STP remains consistent
regardless of the labeling chosen for the new edge. We exploit
this observation to save unnecessary consistency checks.

1Note that is a stronger result than using the tree-structure of the
constraint graph, which requires ensuring 2-consistency [Freuder,
1982].

Corollary 1. When the addition of an edge to a globally con-
sistent STP yields no new cycles, the resulting STP is globally
consistent.

1

2

3

4

5

Figure 5: Simple constraint graph.

Consider the example of Fig. 5. Suppose that search adopts
the following ordering of the edges: � , � 3 , � 3 � A , � , � A , � A7� C , � 3 � C ,
and � C8� # . Fig. 6 shows the configurations of the STPs checked
for consistency at each level in the search.

Along a given path, as the tree generated by search is be-
ing explored in a depth-first manner, two strategies can be
adopted at a given level: (1) Always check the STP for con-
sistency, and (2) check the consistency of the STP only when
a new cycle has been added to the network. At levels 1 and 2,
no cycles exist in the graph, and the STP is necessarily consis-
tent, Fig. 6. At levels 4 and 6, no new cycles have been added
to the graph of levels 3 and 5 respectively, and the correspond-
ing STPs remain necessarily consistent regardless of their la-
beling. As illustrated above, checking for new cycles saves
us unnecessary operations. Further, when the addition of a
new edge yields a new cycle, two biconnected components of
the previous level are necessarily merged into a new bicon-
nected component at the current level. We need to check only
the consistency of the newly formed biconnected component,
and we can safely ignore the rest of the temporal network.
This allows us to localize the effort of consistency checking
to the necessary part of the network.

Corollary 2. When the addition of an edge to a globally con-
sistent STP yields a new cycle, the resulting STP is globally
consistent if and only if the newly formed biconnected com-
ponent is a consistent STP.

The application of this new heuristic, NewCyc, signifi-
cantly enhances the performance of solving the meta-CSP
with search. To apply it, we need to identify, between two
levels of the search tree, (1) that a new cycle has been in-
troduced and (2) the two biconnected components that were
merged as a result. This is done by running the � � � 
 � � al-
gorithm for finding articulation points at each level, check-
ing whether the number of biconnected components was re-
duced between two levels, and identifying the component to

WS on Spatial and Temporal Reasoning 4 IJCAI-03, Acapulco



Search level 1 2 3 4 5 6

STP 1

2

31

2

1

2

3 1

2

3

4

1

2

3

4

1

2

3

4

5

Checking strategy Total
Always � � � � � � 6
NewCyc � � � � � � 2

Figure 6: Comparison of STP checks using different the new-cycle check heuristic.

be checked as that containing the new edge.

3.3 Ordering heuristic for the meta-CSP
Variable ordering is an effective heuristic for improving the
performance of search. In general, it is governed by the ‘fail
first principle.’ The shallower the node pruned in the tree,
the larger the pruned subtree, and the larger the cost savings.
For the meta-CSP, a node is pruned when it corresponds to an
inconsistent STP. Thus, the ordering of the edges (which are
the variables of the meta-CSP) affects how quickly an incon-
sistent STP is found and also the effectiveness of constraint
propagation in the STP.

As stated in Corollary 1, along a given path, no inconsis-
tency may occur between one level and the next unless at least
one new cycle is formed in the temporal graph. Consequently,
a reasonable ordering heuristic is to first consider those edges
that form triangles with edges existing in the STP. This may
allow us to uncover inconsistencies as early as possible. It
also increases the effectiveness of backtracking, because it is
more likely to undo an inconsistency by changing the label-
ing of an edge in the same triangle as the one that yielded
the inconsistency than that of a random edge. Our new edge-
ordering heuristic orders the edges of the temporal graph in
such a way that the network is expanded triangle by triangle
‘around’ the existing edges. The algorithm, given in Fig. 7,
returns the list of edges in the order to be used by the search.
It uses basic operations on lists. Append concatenates two
lists in the order provided. Pop removes and returns the first
item in a list. It requires that each edge be associated with
the number of triangles in which it appears in � , which is
bounded by

��� % � � , where
�

in the number of nodes in � (i.e.,
the time points). We obtain these numbers as a by-product of
the implementation of the triangulation algorithm.

Based on the topology of the network, we choose the edge
that participates in the largest number of triangles and sched-
ule the edges of those triangles for a priority instantiation dur-
ing the search. Fig. 8 illustrates the first steps of the applica-
tion of the algorithm starting from edge I. First, the triangles
in which edge I participates are explored. From there, we
reapply iteratively the same process to each of the edges ex-
plored, i.e. edges II, III, and IV, gradually covering all the
edges in the biconnected component. The modification of
the label of any these edges propagates through these trian-
gles. Thus, inconsistencies and deadends are likely to be
more quickly detected during search, and backtrack remains
locally contained.

We can show that this process stops when all the edges in
the biconnected component have been visited. Then Edge-

Ord restarts from an unvisited edge from the original graph
and repeats the process until all edges of the original network
have been visited. The function returns a list in which the
edges that are in a given biconnected component appear in
sequence. As a result, this ordering heuristic implicitly en-
ables search to examine the biconnected components of the
graph in isolation, and thus decompose the graph automati-
cally. The advantages of this mechanism are:

1. Localized backtracking: This heuristic is based on the
topology of the temporal graph. Neighboring levels in
the search tree are likely to be physically related. When
it encounters a deadend, search will backtrack to an edge
that is more likely the culprit than another edge taken
randomly from the graph.

2. Automatic decomposition of the graph into its bicon-
nected components: The decomposition of the graph
into its biconnected components is an effective tech-
nique to bind the search effort and enhance the perfor-
mance of solving a TCSP. This ordering heuristic im-
plicitly guarantees that articulation points in the graph
(if any), are exploited, as if the network was decomposed
into its biconnected components without using the spe-
cial algorithm necessary for this purpose.

4 � Arc-Consistency
When solving a CSP, it is common to run a domain filter-
ing mechanism (such as arc-consistency, AC) as a preprocess-
ing step to search, and to interleave search with a lookahead
strategy (such as forward-checking, FC [Haralick and Elliott,
1980]). The goal of an AC algorithm is to reduce the do-
main of the variables, thus reducing the size of the CSP and
that of the search tree to be explored. Arc-consistency is usu-
ally easy to achieve in polynomial time. Quite a few general
arc-consistency algorithms exist, such as AC-3 [Mackworth,
1977], AC-4 [Mohr and Henderson, 1986], AC-6 [Bessière,
1994], AC-7 [Bessière et al., 1999], AC-3.1 [Zhang and Yap,
2001], and AC-2001 [Bessière and Régin, 2001].

Removing ‘inconsistent’ intervals from the edge labels re-
duces the size of the meta-CSP and directly benefits search.
The size of the meta-CSP is exponential in the size of the
TCSP. If � is the number of intervals in the label of an
edge in the TCSP, � 
 � is the number of edges, and

�
the

number of nodes by � 
 � # � * ��� ,+.3 , the size of the meta-
CSP is in � � ��� �	� � . Thus it is important to explore mech-
anisms to reduce the size of the meta-CSP. The only con-
straint in the meta-CSP is a global constraint for which no
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EdgeOrd ( � )� � � all edges of �� � nil
While

� � do
	 �� � � Edge of

� � appearing in the largest number of triangles in
� �� � Append (

�
, � 	 �� ������ � nil

While 	 �� � do
Forall � such that � ��� is a subgraph of � do� � Append (

�
, � 	 �� � , 	 � � � � ), � � Append (

�
, � 	 �� � , 	 � � � � )� ��� � �
	�� 	 �� �� 	 �� � , 	 � � � � , 	 �� � � Pop(

�
)

Return
�

Figure 7: Edge ordering heuristic.

IV

III

I

II

Figure 8: Illustrating the exploration of the edges of a graph by the edge ordering heuristic.

efficient consistency algorithm is known. In a companion
paper [Xu and Choueiry, 2003b], we introduce the concept
of � Arc-Consistency as an approximation to the generalized
arc-consistency of the meta-CSP. We also introduce an effi-
cient algorithm, � AC, that implements � Arc-Consistency.
We establish that the complexity of � AC is � �����������
��� � �
� � 
 � � � A � � � ��� � 
 � � A � . This algorithm uses simple
data structures to save significantly the number of constraint
checks2. We use � AC as a preprocessing step to search in
order to reduce the size of the explored tree. We have not
yet interleaved any lookahead strategy based on � AC with
search, but plan to do so in the future.

5 Experimental results
Fig. 9 shows the TCSP solvers we tested, with and without
pre-processing by � AC3.

The STP solvers we used are DPC, PPC, and � STP of Sec-
tion 2. We combined them with the techniques proposed in
Section 3 (i.e., AP, NewCyc, and EdgeOrd). We compared
their performance in terms of the number of nodes visited
NV, constraint checks CC, and CPU time. Since all CPU time
curves have almost exactly the same shapes as the CC curves,
they are omitted to save space but are all available upon re-
quest. We carried out our tests on randomly generated, (guar-
anteed) connected problems. Our generator, described in the
companion paper [Xu and Choueiry, 2003b], guarantees that

2We are considering an improvement that may establish its opti-
mality.

3The companion paper uses only DPC [Xu and Choueiry, 2003a].

at least 80% of these problems have at least one solution. The
TCSP instances generated have the following characteristics:� ��� , � randomly chosen between 1 and 5, density of the
temporal network (

	 � � �	� � � ������� �� � ���� � � � � ����� � ) varies in [0.02, 0.1]
with a step of 0.02 and in [0.2, 0.9] with a step of 0.1. The
number of variables in the meta-CSP, for which we must find
all solutions, varies from 7 to 26. The size of the meta-CSP
varies on average between 1.6 � �"! # and 5.2 � �"! , # . We av-
eraged the results of over 100 samples. The goal of our ex-
periments was to study the effects on the various solvers of
the improvements we proposed 4 (i.e., � STP, AP, NewCyc,
EdgeOrd, � AC), and to establish their effectivness. It is not
our goal here to compare the performance of the various STP
solvers, which is discussed extensively in [Xu and Choueiry,
2003a].

Section 5.1 discusses the number of solutions of the prob-
lems tested. Naturally, all solvers must find the same solu-
tions. Counting the number of solutions was useful to con-
firm that all solvers were sound and that our implementation
was bug-free. Section 5.2 shows the effect of our techniques
on the shape of the tree by measuring the number of nodes
visited. Section 5.3 shows the effect of our techniques on
the various TCSP solvers (i.e., DPC, PPC, and � STP) on
the number of constraint checks. In Sections 5.2 and 5.3 we
also show how filtering the meta-CSP with � AC dramati-
cally improves the performance of search. The effect of this

4Note that although decomposition according to articulation
points is a well-known technique, to the best of our knowledge, it
has not been yet assessed experimentally.
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Figure 9: TCSP solvers tested.

preprocessing is clearly visible in comparisons of the scale of
the vertical axis of the charts without and after preprocessing.
While the benefits of this filtering algorithm are the topic of
our companion paper [Xu and Choueiry, 2003b], we confirm
here that it is useful in any TCSP solver.

5.1 Solutions to the TCSP
When density is low, there are few constraints, any partial so-
lution is likely to be extended to a global solution, and there
are many solutions to the meta-CSP as is seen in Fig. 10.
Indeed, under low density, the temporal network (which is

Figure 10: The number of solutions of the meta-CSP.

guaranteed connected by construction) has almost no cycles.
Thus, almost any combination of intervals in the label of the
edges is a solution to the meta-CSP (see Proposition 3.1).
The number of solutions quickly drops density. When

	
=0.9,

there are only one or two solutions, one of which us guaran-
teed by construction.

5.2 Effects on the size of the search tree
The effects of AP and EdgeOrd on the ‘shape’ of the tree
can be assessed by the number of nodes visited NV by search.
They are shown in Fig. 11.

Note that the effects of NewCyc on the various STP solvers
(i.e., DPC, PPC, and � STP) are irrelevant to this measure-
ment. Indeed, they aim at reducing the cost of checking the
consistency of the STP at a node in the tree once search has
effectively reached the node. The ‘ � ’ in the legend of Fig. 11

indicates that these results hold for all STP solvers tested.
Fig. 11 shows that AP reduces significantly NV when density
is low. When density is high, almost no articulation point ex-
ists, hence AP does not impact NV. The effect of EdgeOrd is
quite dramatic across all values for density because it allows
BT-TCSP to quickly identify dead-ends, as a good ordering
heuristic is supposed to do. Moreover, and thanks to � AC,
we start to notice the existence of a phase transition that ap-
pears around

	 � ! 6 � and becomes increasingly visible as we
move toward more effective TCSP solvers.

5.3 Effects on the number of constraints checks
(same as CPU time)

Here we discuss the effects of our techniques on the various
TCSP solvers: DPC, PPC, and � STP. We show the benefits
of AP and NewCyc on DPC (Fig. 12). We show the benefits
of AP, NewCyc on PPC for both Plan A (Fig. 13) and Plan B
(Fig. 14) Finally, we show the benefits of EdgeOrd and New-
Cyc under Plan A on � STP (Fig. 15).

Exploiting articulation points: For DPC (Fig 12) and PPC
(Fig. 13 and 14), AP is again particularly effective for low
density graphs but useless for high density ones.

New cycle check: NewCyc dramatically reduces CC across
all density values (even though it has no effect on the number
of nodes visited, as stated in Section 5.2).

Triangulation plans: The triangulation of an STP during
search, required for PPC solver, is carried out according to
Plan A (Fig. 13) and Plan B (Fig. 14) of Section 2.2. By
comparing the scale of the vertical axis of these two figures,
we conclude that Plan A is superior to Plan B. This can be ex-
plained as follows. Plan A triangulates, before search, all the
networks that will be checked for consistency during search
(there are exactly � 
 � such graphs). Plan B finds the triangu-
lation of an STP at a given node during search by inducing a
subgraph from the triangulated original STP. Hence, Plan B
triangulates the network only once, while Plan A carries out
as many triangulation operations as the number of edges in
the network (and levels in the search). However, the induced
subgraphs in Plan B end up much denser than the ones used
by Plan A, thus requiring more effort from PPC, the STP
solver. Further, the fact that Plan A yields no denser graphs
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Figure 11: Nodes visited by BT-TCSP. Left: without preprocessing. Right: after filtering with
�

AC.

Without AC

After AC

Figure 12: Constraint checks for DPC-TCSP.

than Plan B becomes an even more desirable feature when
TCSP is dense. This explains the significant differences in
behavior between Plan A and Plan B under high density TC-
SPs.

The winning combination: In [2003a] we compared the
performances of F-W, DPC, PPC, and � STP for solving an
STP. We found that DPC, PPC, and � STP consistently out-
perform F-W, the Floyd-Warshall algorithm. Further, � STP
consistently outperforms PPC. Indeed, the former is a finer
version of the latter. Importantly, when the density of the
temporal graph is below 0.4, � STP (which guarantees mini-
mality) outperforms DPC (which does not). For sensibly high
densities, we found DPC to be more effective. Since in the
search for solving the meta-CSP we consider subgraphs of
the original network, the networks at the different levels of
the tree are more likely to be sparse than dense. This shows

that even when the TCSP is dense, � STP is a good choice
for the STP solver. Hence, among the techniques tested, the
best combination one could use to solve a TCSP is the one
we called � STP-TCSP (Fig. 9). Indeed � STP outperforms
all TCSP solvers including the one based on DPC (compare
Fig. 12 and 15).

6 Conclusions

At the beginning of our investigations, the best mechanism
known to date for solving the meta-CSP5 was one based on
DPC. We introduced � STP, enhanced it with NewCyc and
EdgeOrd, and showed empirically that it results in dramatic

5Note that we do not include in our comparision algorithms that
tighten these intervals in the labels of the edges. Those may not
terminate in the general case and are prohibitively expensive in the
integral case [Dechter, 2003].
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Figure 13: Constraint checks for PPC-TPCS using Plan A.

Without AC

After AC

Figure 14: Constraint checks for PPC-TCSP using Plan B.

improvements. Indeed, in comparision to the original DPC,
the best combination of our techniques reduces the number
of constraint checks by a factor of 500 (median) and 40,000
(average) and that of CPU by a factor of 320 (median) and
1,200 (average).

Further, we showed that our techniques uncover the exis-
tence of a phase-transition-like phenomenon for solving the
TCSP, which is most visible with � STP-TCSP. This obser-
vation calls for more detailed investigations in this direction.
As directions for future research, we plan to:

1. Investigate how to exploit � AC in a lookahead strategy
for solving the meta-TCSP; and,

2. Evaluate empirically how to improve BT-TCSP with dy-
namic bundling [Choueiry and Davis, 2002], which is
particularly attractive in this context since we are look-
ing for all solutions.
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