
An Approximation of Generalized Arc-Consistency for TCSPs

Lin XU and Berthe Y. CHOUEIRY
Constraint Systems Laboratory

Department of Computer Science and Engineering
University of Nebraska-Lincoln University of Nebraska-Lincoln, Lincoln NE, 68588-0115

lxu
�
choueiry@cse.unl.edu

Abstract

Dechter [2003] proposed to solve the Temporal
Constraint Satisfaction Problem (TCSP) by model-
ing it as a meta-CSP, which is a CSP with a unique
global constraint. The size of this global con-
straint is exponential in the size of the TCSP, and
generalized-arc consistency is equivalent to solv-
ing the TCSP problem, which is NP-hard. We
reformulate the meta-CSP by replacing its unique
global constraint with a polynomial number of
polynomial-size ternary constraints. We define�

AC as a generalized arc-consistency algorithm
for these ternary constraints. Thus,

�
AC approxi-

mates generalized arc-consistency on the TCSP. We
use

�
AC as a preprocessing step for solving the

meta-CSP and show that it dramatically reduces the
size of this meta-CSP and significantly enhances
the performance of search for solving the TCSP.

1 Introduction
A Simple Temporal Problem (STP) is defined by a graph ������	��
�����

(see Figure 1, left) where

1,2e

= {[3, 5], [6, 9], ...}1,2I
1,2e

I = [3, 5]1,2

2

1

2

1

Figure 1: Left: STP. Right: TCSP.� �
is a set of vertices � representing time points;�

is a set of edges ����� � representing constraints between

two time points � and � ; and�
is a set of constraint labels for the edges. A constraint

label
 ��� � of edge � ��� � is a unique interval � � ����� , � ���! "

, and denotes a constraint of bounded difference �$#
(�&%'� � # �

.

A Temporal Constraint Satisfaction Problem (TCSP) is de-
fined by a similar graph � =

�(�)��
*����
, where each edge label ��� � = +-,/.10/2�3� � ,/.54�2�3� , 67686 , ,/.:9;2�3�=< is a set of disjoint intervals denoting

a disjunction of constraints of bounded differences between �
and � (see Figure 1 right). We assume that the intervals in a
label are ordered in a canonical way.

Dechter [2003] described a backtrack search procedure for
solving a TCSP, which is NP-hard. To this end, the TCSP is
expressed as a ‘meta’ Constraint Satisfaction Problem (CSP),
or meta-CSP:� The variables of the meta-CSP are the edges � ��� � of � .

Their number >
 > depends on the density of the temporal
graph and may reach ? . ?�@ 0A24 , where B is the number of
nodes in the TCSP.� The domain of a variable ����� � , denoted Domain(����� �), is

its label,
 ��� � = +-,/.10A2�3� , ,C.54�2�D� , 68676 , ,C.:9E2�D�'< .� The only constraint in the meta-CSP is a global con-

straint that requires the variable-value pairs (vvps)
+ � �F��� � � , .:G-2�D� � < for all the variables �F��� � � to form a
consistent STP. The size of this constraint (i.e., number
of possible tuples) is HJI K	I and can reach H)L-M3L�NPO�QR . It is
thus exponential in the size of the TCSP.

The backtrack search on the meta-CSP requires solving
an STP at every node in the search. Its complexity is
thus S � BJT-HJI K	I � [Dechter, 2003]. Given the definition of
the unique global constraint, running a generalized arc-
consistency algorithm [Mohr, 1988] on the meta-CSP is pro-
hibitively expensive.
Proposition 1.1. Generalized arc-consistency on the meta-
CSP is NP-hard.
Proof: The only constraint in the meta-CSP is a global con-
straint. Its allowed tuples are all consistent STPs that are
solutions to the meta-CSP. Finding its definition to enforce
generalized arc-consistency is thus equivalent to solving the
meta-CSP, which is NP-hard [Dechter, 2003]. U

We propose to approximate this problem by replacing the
exponential-size global constraint in the meta-CSP with a
polynomial number of polynomial-size ternary constraints.
We define an efficient generalized arc-consistency algorithm
specialized for these ternary constraints, which we call

�
AC.

The complexity of
�

AC is S ��VXW(Y[Z�W�W\� � �'] >
 >] H^T � �S � B	>
 > H\T � , resulting in an approximation of the generalized
arc-consistency of the meta-CSP. We propose to investigate
a slight improvement of

�
AC, which may allow us to estab-

lish the optimality of this algorithm. In order to demonstrate
the effectiveness of our approximation, we test and report the
performance of

�
AC as a preprocessing step to search, show-

ing a dramatic reduction in the size of the meta-CSP, which

is a product of the domain sizes of its variables ������� �	� K > ��� ��> .
We also report the performance improvement of the backtrack
search for solving the meta-CSP with and without this pre-
processing in terms of CPU time and number of constraint
checks CC.

To the best of our knowledge, the only other work re-
ported in the literature on applying consistency algorithms
to the meta-CSP is a study by Schwalb and Dechter [1997;
2003]. They attempt to apply a path consistency algorithm
(PC) to the labels of variables of the meta-CSP. Given the
disjunctive intervals, this closure algorithm causes a fragmen-
tation problem, which increases the number of intervals per
label and makes the resulting meta-CSP even harder to solve
by a search algorithm. To avoid this fragmentation problem,
Schwalb and Dechter introduced the Upper-Lower Tighten-
ing algorithm (ULT) [1997]. ULT computes looser networks
than those resulting from enforcing full path-consistency, but
results in the same upper and lower bounds as PC.

Our approach is neither like path-consistency nor like ULT.
We consider each interval as an independent value in the do-
main of a variable. Our goal is to remove inconsistent in-
dividual intervals from the labels, not to tighten these inter-
vals, which may not terminate in the general case and is pro-
hibitively expensive in the integral case.

This paper is structured as follows. Section 2 describes the
reformulation of the meta-CSP and the

�
AC algorithm. Sec-

tion 3 describes our experiments and observations. Finally,
Section 4 concludes this paper.

2 The label filtering algorithm
We reformulate the meta-CSP by replacing its unique global
constraint with a ternary constraint

� � � ��� � � �F��� 9
� �7��� 9

�
among

every variable ����� � , �F��� 9 , and �7��� 9 of the meta-CSP that forms
an existing triangle in the temporal network � . Note that we
do not triangulate the temporal network, nor do we make it
a complete graph. Below, we define the

�
arc-consistency

property as the generalized arc-consistency of this constraint
and describe the

�
AC algorithm to achieve it.

2.1
 arc-consistency
An STP is solved by computing the transitive closure under
composition and intersection of the intervals of its edges. The
transitive closure of an STP results in a complete temporal
graph:� The composition ,�� 9 � , �3��� ,5� 9 of the intervals ,��D�'�� � ����� and , � 9 � � ���[� labeling the respective edges � ��� �

and � ��� 9 is a new interval , � 9 � � ���� ��� � � �
labeling the

edge ����� 9 .� The intersection ,���� 9 � ,����� 9
� ,�� ���� 9 of the intervals ,��� 9 �� � ����� and ,�� �� 9 � � ���[� labeling the respective ������ 9 and ��� ���� 9is a new interval , � 9 = [maximum(� �), minimum(

�F���
)]

labeling the edge � ��� 9 .

To define the concept of
�

AC of a meta-CSP, we use the
above two operations.

For each triangle � ��H in the original temporal network we
define a ternary constraint in the meta-CSP

� � ����� � � �F��� 9
� �7��� 9

�
.

Given three variable-value pairs
� ����� � � , �3� � , � �-��� 9

� , � 9
�
, and

� �7��� 9
� ,5� 9

�
of the meta-CSP, with ���� ���� H , we say that

the labeled triangle
� � � ����� � � , �3� � , � �F��� 9

� , � 9
�
,
� �7��� 9

� ,5� 9
�C�

is a
consistent triangle if and only if

� , �D� � , � 9
� � , � 9 ���� . Fig-

ure 2 shows a consistent triangle
� � � � ��� � � � � � �F���;�[� � ��� 9

� � ! ��" � �E�� �7��� 9
� � # ��$���� � . We also say that each variable-value pair in the

ei,j(, [3, 5]) ei,k(, [4, 9]) ej,k(, [2, 6])∆ [, ,]
ji

k

Figure 2: A consistent triangle.

triangle is supported by the two other variable-value pairs.
We introduce the following definitions:� The ternary constraint

� � ����� � � �F��� 9
� �E��� 9

�
is
�

AC relative
to the meta-CSP variable � ��� � if and only if for every in-

terval , .&%82�3�
Domain(�F��� �) there exist an interval , .('E2� 9

Domain(�F��� 9) and an interval , .&)�29 �

Domain(� 9 � �) such

that
� ,/.('E2� 9 � ,C.&)�29 �

� � ,/.(%82�3� ���� .
� The ternary constraint

� � ����� � � �F��� 9
� �7��� 9

�
is

�
AC if and

only if it is
�

AC relative to the variables � ��� � , � ��� 9 , and�7��� 9 .� Finally, the meta-CSP is
�

AC if and only if all its
ternary constraints are

�
AC.

We identify all the existing triangles in the temporal network
and replace each of them by a ternary triangle constraint. The
number of these new constraints is in S � >
 > V[W Y Z�W�W�� � �A� �S � >
 > B � . The size of each constraint is at most H T . Note that
we do not add any edges to the temporal network to make it a
complete graph or to triangulate it.

2.2
 AC algorithm
The

�
AC algorithm, shown in Figure 5, removes the intervals

in the domain of an ����� � that do not have a support in any trian-
gle in which ����� � appears in the temporal graph. It implements
mechanisms for consistency checking that are reminiscent of
AC-4 [Mohr and Henderson, 1986] and AC-2001 [Bessière
and Régin, 2001] in that it tries to optimize the effort for con-
sistency checking. It uses the procedures First-support
of Figure 3 and Initialize-support of Figure 4. The
Push and Delete operations we use are destructive stack
operations.

It operates by looking at every combination of a vvp
� � ��� � ,, �3� � and the triangles � ��H in which it appears, denoted * � � ��� � ,, �3� � , ����H,+ . The support of * � ����� � , , �D� � , � ��H,+ is the first ele-

ment in the domains of � ��� 9 and � ��� 9 that yields a consistent
triangle. (Note that domains and variables are ordered canon-
ically.) Intervals in the domain of a variable that are not sup-
ported in any triangle are removed from the domain. When an
interval is removed, some vvps may lose their support.

�
AC

tries to find the next acceptable support. The process is re-
peated until all vvps have a valid support in every relevant
triangle.

We use a hash-table Supported-by to keep track of the
support of each vvp

� ����� � � , �3� � in a triangle � ��H . A key in this

WS on Spatial and Temporal Reasoning 2 IJCAI-03, Acapulco

First-support(* � � ��� � � , �3� �E� ����H,+)� �D� 9 �
� � � �F��� � � , �D� �E�8� �-��� 9

� ,��� 9
�E�8� �E��� 9

� ,��� 9
� � � Supported-by

� * � ����� � � , ��� � �;� ���PH + �
Unless

� �3� 9 Then � � 1, � � 0
For � from

� � �
	 � to > Domain � �8��� 9
� >

Unless
� ,��� 9 � ,��� 9

� � , �3� = nil Return
� � � �F��� � � , �3� �;�8� �F��� 9

� ,��� 9
�;�8� �7��� 9

� ,��� 9
� �

If � = >Domain � �F��� 9
� >

Then Return nil
Else For B from

� � �
	 � to >Domain � � ��� 9
� >

For
�

from 1 to >Domain � �7��� 9
� >

Unless
� , ?� 9 � ,�� 9

� � , �D� = nil Return
� � � � ��� � � , �3� �;�-� � ��� 9

� , ?� 9
�;�-� � ��� 9

� ,�� 9
�C�

Return nil

Figure 3: First-support.

Initialize-support(�)
Support-by, Supports: two empty hash-tables� � + � �-��� � � , �3� � < , set of all vvps in the meta-CSP� � � nil, Consistency � �
While

���
Consistency do� �F��� � � , �D� � � Pop(

�
)

Forall H such that ����H is a subgraph of � do� �3� 9 �
� � � � ��� � � , �3� �E�8� � ��� 9

� , � 9
�E�8� � ��� 9

� , � 9
�C� � First-support(* � � ��� � � , �3� �;� � ��H,+)

If
� �D� 9 , Then Supported-by � � ����� � � , �3� �;� ���PH � � � �3� 9Push(*��F��� � � , �D� � � ��H,+ , Supports � � �F��� 9

� , � 9
� ���

Push(*�� ��� � � , �D� � � ��H,+ , Supports � � � ��� 9
� , � 9

� ���
Else Domain

� � ��� � � � Domain
� � ��� � ��� +F, �D� <

Push(
� �F��� � � , �D� �E� � �)

Unless Domain
� �F��� � � Then Consistency ���

Return
� � , Supported-by, Supports, Consistency

Figure 4: Initialize-support.

hash-table is a tuple * � ����� � � , �3� � , ����H,+ ; its value is a consis-
tent triangle

� � � � ��� � � , �D� � , � � ��� 9
� , � 9

�
,
� � ��� 9

� , � 9
� �

. The size of
Supported-by is S � >
 > H V[W Y[Z�W�WP� � �A�

. We also use a hash-
table Supports to keep track of what a given vvp supports
in Supported-by. The key is a vvp

� ����� � � , �D� � and the value
is a list of the keys of Supported-by that this vvp sup-
ports.

The procedure Initialize-support shows how
these data-structures are initialized. By construction, Sup-
ports has S � >
 > H � keys and a total of S � >
 > H V[W Y Z�W�W�� � �A�
elements.

In addition to these hash-tables, Initialize-
support returns the list

� � of vvps deleted from the
domains of the meta-CSP at the initialization step.

�
AC,

shown in Figure 5, iterates over the vvps that have been
deleted and retracts them from supporting entries in
Supported-by.

We can prove that
�

AC terminates, does not re-
move any consistent intervals (i.e., is sound), and is inS ��VXW Y Z�W�W\� � � >
 > H\T � � S � B	>
 > H\T � . We can further improve
its performance and reduce the number of constraint checks
by exploiting the convexity property of interval intersection,
which we suspect may result in an optimal algorithm.

3 Experimental results
We conducted empirical evaluations on randomly generated
TCSPs. Below we describe our random generator, the char-

acteristics of the experiments we conducted, and our observa-
tions based on the results.

3.1 Random generator
We designed a generator of random TCSP instances that guar-
antees that the temporal network is connected and that a spec-
ified percentage of the generated instances is solvable. Our
generator is designed as follows. It takes as input:� The number of nodes B in the temporal network, which

is the number of time points in the TCSP.� The density
�

of temporal graph � . This determines the
number of edges >
 > in the temporal graph. Naturally,
>
 >�# ? . ?�@ 0/24 .� The maximal number of intervals in the label of an edgeH . The actual number of intervals per label is chosen
randomly in a uniform manner between 1 and H .� The range of the nodes selected from � � ��	 � � � , with
� ��

.� The percentage ��� of solvable problems.

We generate a random TCSP example by following the steps
below:

1. We select values in � to correspond to positions of time
points in this interval. We enforce that the first node of
the graph has position 1, and the last node in the graph

WS on Spatial and Temporal Reasoning 3 IJCAI-03, Acapulco

�
AC(�)�
, Supported-by, Supports, Consistency � Initialize-support(�)

While
���

Consistency do� � ��� 9
� , � 9

� � Pop(
�

)
Forall each *�� ��� � � , �D� � � ��H,+ Supports � � � ��� 9

� , � 9
�C�

)� �3� 9 �
� � � �F��� � � , �3� �E�8� �F��� 9

� , � 9
�E�8� �7��� 9

� ,5� 9
�C� � Supported-by

� * � �F��� � � , �3� �;� � ��H,+ �
Delete(* � �F��� � � , �3� �E� ����H,+ , Supports � � �F��� 9

� , � 9
� �

)
Delete(* � � ��� � � , �3� �E� ����H,+ , Supports � � � ��� 9

� , � 9
�C�

)� ��3� 9
� � � � �F��� � � , �3� �E�8� �F��� 9

� ,��� 9
�E�8� �7��� 9

� ,��� 9
�C� � First-support(* � ����� � � , �3� �;� � ��H,+)

If
� ��D� 9Then Supported-by � � �F��� � � , �3� �;� � ��H � � � ��D� 9Push(*��F��� � � , �3� � ����H,+ , Supports � � �F��� 9

� ,��� 9
�C� �

Push(*��F��� � � , �3� � ����H,+ , Supports � � �7��� 9
� ,��� 9

�C� �
Else Domain

� �F��� � � � Domain
� �F��� � � � +-, �3� <

Push(
� �F��� � � , �3� �;� �)

Unless Domain
� � ��� � � Then Consistency ���

Return + Domain � �F��� � � <
Figure 5:

�
AC.

has position � . Then we select randomly
� B$% # � dis-

tinct points within the given interval � , excluding the
extremities of � .

2. We use the ? . ?\@ 0A24 combinations of two time points �
and � (with ��� �) generated above to generate a list �
of edges � ��� � . Then we build the list

of edges by edges

randomly selecting >
 > edges from � .

3. Measuring the distance �=� � ��% � � for each edge � ��� �
in

, we label � ��� � with a random number of intervals

in ��	 � H � while ensuring that there is at least one interval� � ����� such that �
 � � ����� . This ensures that the resulting

TCSP has a solution.

4. With probability
� 	 % � � � , we swap the labels of two

random edges in the graph.

5. Finally, we test the graph for connectivity and discard
the unconnected graphs.

3.2 Experiments conducted
We tested

�
AC on the randomly generated connected prob-

lems of Table 1. Our generator guarantees that at least 80%
of these problems have at least one solution. We average the
results over 100 samples.

In order to demonstrate the filtering power of
�

AC, the
comparison of the average size of the meta-CSP before and
after filtering is shown in Figure 6 for TCSP I and Figure 7
for TCSP II. The numerical values reported in Table 2 and
Table 3.

In order to demonstrate the advantages of
�

AC, we re-
port the cost of solving the meta-CSP with and without this
preprocessing. This also allows us to verify the correctness
of our implementation since both processes must yield ex-
actly the same solutions. To solve the meta-CSP we use the
basic chronological backtrack search described in [Dechter,
2003]. This search process requires solving an STP at each
node expansion. To this end, we use the Directional Path-
Consistency algorithm DPC also of Dechter [2003]. In our
experiments, this algorithm was significantly more efficient

than the Floyd-Warshall algorithm in determining the consis-
tency of the STP (although it does not necessarily yield the
minimal STP).

Solving the meta-CSP requires finding all its solutions.
Figure 6 also shows the number of the solutions of the meta-
CSP for TCSP I. We are not able to run the search without
filtering for the TCSP II given the size of the meta-CSP and
the necessity to find all its solutions.

The results of solving the meta-CSP in terms of CPU time
and constraint checks CC for TCSP I are shown in Figure 8
and Figure 9, and the numerical values are reported in Ta-
ble 2. In this table, we also report the cost of running

�
AC

although it is already included in the cost of search in order
to demonstrate that the overhead due to filtering is practically
negligible.

3.3 Observations
The comparison of Figure 6 and Figure 7 shows that the
pruning power of

�
AC increases with the size of the prob-

lem. It also shows that
�

AC dramatically reduces the size
of meta-CSP especially when density is high, which is typi-
cal of consistency filtering techniques used as a preprocessing
step to search. More importantly, Figure 6 shows that the size
of meta-CSP obtained after filtering by

�
AC is close to the

number of solutions for high-density networks.
Figure 8 and Figure 9 show the cost of solving the meta-

CSP with and without preprocessing with
�

AC in terms of
constraint checks and CPU time, respectively. The figures
show that preprocessing does not negatively affect the cost
of search under low density and is tremendously effective in
reducing the total cost under high density. Indeed, the cost
of search is almost negligible when density is high. In con-
trast, search without preprocessing with

�
AC is prohibitively

expensive when density is high.
When density is low, the temporal graph has few edges,

hence the meta-CSP has relatively few variables and its size
is small. When density increases, the number of edges in
the temporal graph, and hence the number of variables in
the meta-CSP, increase, yield exponentially larger problems.

WS on Spatial and Temporal Reasoning 4 IJCAI-03, Acapulco

TCSP
Experiment � �

Density � ��� Samples Results
Range Step Range per point

TCSP I 8 [1, 5] [0.02, 0.1] 0.02 [7, 9] 100 Figure 6, Figure 8,
8 [1, 5] [0.2, 0.9] 0.1 [11, 26] 100 Figure 9 and Table 2

TCSP II 20 [1, 5] [0.02, 0.1] 0.02 [22, 36] 100 Figure 7 and
20 [1, 5] [0.2, 0.9] 0.1 [53, 173] 100 Table 3

Table 1: Problems tested.

Figure 6: Reduction of problem size of TCSP I. Figure 7: Reduction of problem size of TCSP II.

However, this increases the number of triangles in the tem-
poral graph and enhances the filtering power of

�
AC, which

removes most intervals. In all cases, the experiments strongly
support using

�
AC when solving a TCSP.

Moreover, the use of
�

AC seems to uncover the potential
existence of a phase transition around density ���^6 � " . We
plan to investigate this more thoroughly in the future.

4 Conclusions

From the experimental results reported in the previous sec-
tion, we draw the following conclusions:

1.
�

AC is sound in the sense that it never eliminates inter-
vals that may appear in a solution of the meta-CSP.

2.
�

AC can dramatically reduce the size of the meta-CSP,
especially when density is high. Hence it helps to im-
prove the performance of the backtrack search to solve
meta-CSP.

3. The cost of
�

AC is negligible compared with the cost
of the search for solving the meta-CSP.

This establishes that the
�

AC is a cheap and effective con-
sistency algorithm and should become part of any standard
preprocessing technique for solving TCSP.

One interesting direction for future research is to investi-
gate how

�
AC can be used to improve the performance of

the ULT algorithm of Schwalb and Dechter [1997] since the
two approaches are orthogonal and, to the best of our knowl-
edge, the only reported consistency filtering techniques for
TCSPs.

Acknowledgments:
This work is supported by a NASA-Nebraska grant and the
CAREER Award #0133568 from the National Science Foun-
dation. We are indebted to anonymous reviewers of a draft of
this paper for their comments, which helped up improve our
presentation.

References
[Bessière and Régin, 2001] Christian Bessière and Jean-

Charles Régin. Refining the Basic Constraint Propagation
Algorithm. In Proc. of the 17 G IJCAI, pages 309–315,
Seatte, WA, 2001.

[Dechter, 2003] Rina Dechter. Constraint Processing.
Manuscript, forthcoming, 2003.

[Mohr and Henderson, 1986] R. Mohr and T. C. Henderson.
Arc and Path Consistency Revisited. Artificial Intelli-
gence, 28:225–233, 1986.

[Mohr, 1988] R. Mohr. Good Old Discrete Relaxation. In
European Conference on Artificial Intelligence (ECAI-88),
Munich, W. Germany, 1988.

[Schwalb and Dechter, 1997] Eddie Schwalb and Rina
Dechter. Processing Disjunctions in Temporal Constraint
Networks. Artificial Intelligence, 93:29–61, 1997.

WS on Spatial and Temporal Reasoning 5 IJCAI-03, Acapulco

Graph Number of Size of meta-CSP Number Cost of search Cost of search Cost of � AC
density variables of solutions without � AC with � AC

in meta-CSP Original Filtered CPU [s] CC CPU [s] CC CPU [s] CC
0.02 7 16701.67 16701.67 16701.67 13.6 518463.66 13.62 518463.66 5.00E-04 0
0.04 8 58448.44 40831.72 4176.91 21.6 843112.7 17.86 712777.7 5 0.0011 55.53
0.06 8 64780.24 48399.24 4837.69 25.03 965354.3 22.02 868557 0.0012 50.98
0.08 9 282427.3 142638.28 1437.01 24.23 1008288.4 18.14 782634.6 0.0022 122.7
0.1 9 271254.2 132758.27 1331.86 26.08 1103695.6 17.83 793677.7 0.0017 134.14
0.2 11 4257366 653949 105.88 23.95 1105540.5 6.43 335393.7 0.0033 324.44
0.3 13 6.81E+07 2424326.7 20.02 16.32 866010.3 2.1 117963.0 5 0.005 575.8
0.4 15 1.10E+09 1117395.5 5.97 22.13 1320010.5 0.49 29187.06 8 0.0075 880.23
0.5 18 6.64E+10 62.07 2.4 26.11 1630835.2 0.07 3654.7 0.0115 1383.8
0.6 20 1.06E+12 33.21 2.35 29.25 1932359.2 0.07 3821 0.015 1711.11
0.7 22 1.61E+13 31.16 2.19 34.87 2297002.5 0.077 3607.89 0.0192 2059.18
0.8 24 2.74E+14 2.41 1.66 57.13 3946315 0.07 3226.7 0.0217 2393.2
0.9 26 5.23E+15 2.48 1.6 74.39 5128653 0.08 3851.71 0.0262 2839.48

Table 2: Performance of
�

AC on TCSP I

Graph Number of variable Size of meta-CSP Cost of
�

AC
density in meta-CSP Original Filtered CPU [s] CC

0.02 22 1.51E+13 9.31E+12 4.10E-03 86.01
0.04 26 4.16E+15 1.05E+15 0.0064 253.1
0.06 29 2.97E+17 5.66E+16 0.008 362.02
0.08 33 7.27E+19 3.94E+18 0.0111 558.49
0.1 36 4.45E+21 1.72E+19 0.014 811.03
0.2 53 7.86E+31 1.11E+22 0.0362 2581.44
0.3 70 2.00E+42 1.48E+08 0.072 5268.13
0.4 87 2.23E+52 1545.05 0.114 8047.06
0.5 105 2.62E+62 79.69 0.168 11324.46
0.6 122 1.96E+73 60.2 0.254 15446.33
0.7 139 1.90E+83 37.11 0.332 20522.24
0.8 156 6.46E+93 23.55 0.433 26050
0.9 173 1.88E+104 24.6 0.554 33139.41

Table 3: Performance of
�

AC on TCSP II

Figure 8: Constraint checks for solving TCSP I. Figure 9: CPU time for solving TCSP I.

WS on Spatial and Temporal Reasoning 6 IJCAI-03, Acapulco

