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Abstract

In this paper, we extend the empirical study of a
multi-agent search method for solving a Constraint
Satisfaction Problem (CSPliu et al, 2004. We
compare this method’s performance with that of a
local search (LS) and a systematic (BT) search, in
the context of a real-world application that is over-
constrained—the assignment of Graduate Teaching
Assistants (GTA) to academic tasks. We report
our observations and summarize our analysis of the
main features and limitations of this multi-agent
search. We show that for solvable, tight CSPs,
multi-agent search clearly outperforms both LS and
BT, as it finds a solution when the other two tech-
niques fail. However, for over-constrained prob-
lems, the multi-agent search method degenerates in
terms of stability and the quality of the solutions
reached. We identify the source of this shortcom-
ing and characterize it as a deadlock phenomenon.

Introduction

A Constraint Satisfaction Problem (CSP) is definedfby-=

(V,D,C) whereV is a set of variables) the set of their re-
spective domains, and is a set of constraints that restricts

solve this problem: a systematic, backtrack search and-a hil
climbing, local search. We stress that our investigatiors a
motivated by, and focus on, the GTA problem of which we
have collected a few, but real, data samples. Consequently,
our experiments are exploratory in nature. More thorough ex
periments, in a methodology similar to that[éfoos, 1998

still need to be carried out to validate our conclusions.

The results of our study can be summarized as follows. The
multi-agent approach exhibits the best ability to recovenf
local optima due to its goal-directed behavior and communi-
cation capabilities. As a result, the multi-agent apprazarh
solve tight CSPs when the other two approaches fail. How-
ever, with unsolvable problems, its behavior becomesierrat
and unreliable. We were able to trace this shortcoming to the
same feature that constitutes the strength of this approach
the inter-agent communication mechanism, which resulis in
deadlock state in over-constrained situations.

This paper is structured as follows. Section 2 introduces
multi-agent based search, the GTA problem, and the ERA
model. Section 3 describes five experiments and summa-
rizes our observations. Section 4 discusses the relative pe
formance of the methods tested. Finally, Section 5 provides
direction for future research.

2 Background
Here we summarize the principle of the multi-agent based

the accep;able co_mb_ination of values forvar_iables. Sglain arch and describe the main features of our particular ap-
CSP requires assigning a value to each variable such that %ﬁcation We then explain how the application relates ® th
constraints are simultaneously satisfied, which is in ganer rinciple.

NP-complete. CSPs are used to model a wide range of decE '

sion problems, thus they are important in practical sesting 2.1 A Multi-agent-based method

_ Search algorithms for solving CSPs are usually classifiety mij-agent system is a computational system in which sev-
into two main categories: local search and systematic algosrq| agents interact and work together in order to achieve a
rithms. Recently, Liu et all2003 proposed a competitive ot of goals. Inspired by swarm intelligence, Liu {203
multi-agent based technique. In this paper, we analyze thg.,nsed a search method for solving CSPs based on a multi-

behavior of a multi-agent based approach, ERA of Liu et alagent approach in which every variable is represented by a
[2004, in solving an over-constrained practical problem: thesingle, independent agent. A two-dimensional grid-likeien

assignment of graduate teaching assistants (GTA prob®m) {onment, inhabited by the agents, corresponds to the demain
academic tasks We compare the behavior of the multi-agent ¢ yariaples. Thus, the positions of the agents in such an en-
approach to two other approaches we have implemented {Q,5nment constitute the solution to a CSP.

*115 Ferguson Hall, Computer Science and Engineering, UNL, Liu et al.[2007 presented an algorithm, called ERA (i.e.,
Lincoln NE, 68588-0115, fax +1(402)472-7767. Environment, Reactive rules, and Agents), that is an atern

!Note that we do not address the more general Employedive, multi-agent formulation for solving a general CSP- Al
Timetabling Problem (ETP) defined iSBchaerf and Meisels, 2000  though ERA can be viewed as an extension to local search, it



differs from local search in some subtle ways. Moving fromcolumns whereD ... is the size of the largest domain. The
one state to another in local search typically involves ghan entry e(i, j).violation in the environmeng refers to a po-
ing the assignment of one (or two) variables, thus the namsition at row: (representing Agent) and columnj (repre-
local search. In multi-agent search, any number of vargablesenting the value of index in the domain of Agent). It

can change positions at each move; each agent chooses $tores a list of two values for Agehin positionj, namelydo-
most convenient position (e.g., value). The evaluatiortfun main valueandviolation value Domain valuee(s, j).value,

tion that assesses the quality of a given state in local kéarc is the current value assigned to an agent. Violation value,
a global account of the quality of the state (typically thko e(¢, j).violation, is the number of constraints broken by the
number of broken constraints). In ERA, the value of the stateurrent assignment of an agent. Fig. 1 illustrates the envir

is a combination of the value of the individual agents (typ-mentFE of in the GTA problem. Each course is an agent, and
ically the number of broken constraints of an agent). ERAeach cell records two values of the agent: the domain value
appears to decentralize the global control of the seleatfon (i.e., a GTA) and the violation value. This violation value
the next state to the individual agents.

course-1 | (GTA1.3) | (GTA2.12) | (GTA4.,12) [ (GTAS, 15)] (GTA7.52) |
2.2 Graduate Teaching Assistants (GTA) problem course-g : : :

As a real-world CSP, the GTA problem is defined as follows. ) : ) ]

In a semester, given a set of graduate teaching assistants, a : ; ; ;

set of courses, and a set of constraints that specify alllewvab  coursen [ (GTA29) [ (GTA5,8) [(GTAI6, 80) (GTA21,18)]
assignments, find a consistent and satisfactory assigrohent
GTAs to coursegGlaubius and Choueiry, 2002 In prac-
tice, this problem is over-constrained. Typically there aot tis al led itsositi | A
enough GTAs to cover all tasks, and some courses may ha\?et an agent is also called ifgosition value - A zero

no GTA assigned to them. The goal of the GTA problem iSposition is a position for the agent that does not break

to ensure GTA support to as many courses as possible. wWay. of the constraints that_ apply to it Tha}t means the cnrren’
measure the quality of a solution primarily by the number OfaSS|gnment of the agent is consistent with the other agents

courses assigned to a GTA. A secondary criterion is to maxi§133|gnments. Obviously, if agents are all in zero posifions

mize the arithmetical or geometric average of the assignrmentheig :Vedgtae\éev\?hgjrl]l ’azogSf;?g:]:\ﬁluégnbsmgn'n?ﬁ?aggri;nto
since each GTA expresses a preference value (between 0 gve epach agent find izegrlo ositio% P : 9
5) for each course. 9 P

In the GTA problem, the courses are modeled as variableReactive rules

and the GTAs are the values. There are a number of unary,y et al.[2004 define three reactive ruleR, that govern the

binary and non-binary constraints that model the rules govinteraction between an agent and the environment:
erning the assignments. In particular, each course hagla loa

Thetotal load of a semester is the maximum of the cumula- 1+ -€ast:move The agent chooses the position with the
tive load of the individual courses (in our setting, the sstee minimal value and moves to it, breaking ties randomly.
has two parts that do not always have equal loads). Further,2. Better-moveThe agent chooses a position at random. If
each GTA has a capacity factor, which is constant through-  the chosen position has a smaller value than the current
out the semester and indicates the maximum course weight  position value, then the agent moves to it. Otherwise the
he or she can be assigned at any point in time during the  agent keeps its current position.

semester. The sum of the capacities of all GTAs’ represents
theresource capacityA detailed description of the problem,
the constraints, and the solution derived by using a backtra
search can be found [Glaubius and Choueiry, 2002

Figure 1:The data structure of environmeht

3. Random-moveaNith a probabilityp, the agent randomly
chooses a position to move to. This rule avoids the pos-
sibility of the agent getting stuck ia local optimum

Agent
2.3 ERA model A variable is represented by an agent. At each state, the
An ERA system has three components: an EnvironmBjt ( agents choose a position to move to following the reactive
a set of Reactive rulesR), and a set of Agents4). The en- rules. The agents will keep moving until all have reached
vironment records the number of constraint violations ef th zero position  or a certain time period has elapsed.
current state fqr each value in the donjz?uns of all vanablesERA algorithm
Each variable is an agent, and the position of the agent cot= . L . L
responds to the value assigned to this variable. The ageﬁthe ERA algorithm has the following five main functions:
moves according to its reactive rules. Three assumptians ar 1. Initialization builds the environmenk, gener-
made: all agents have the same reactive rules; an agent can ates a random position for each agent, and moves the
only move to positions in its own domain; and agents move  agent to this position.

in sequence and not at the same time. 2. Evaluation  calculates the violation value of each
Environment possible position for each agent.

An environmentE is a two-dimensional array that has 3. Agent-Move checks whether an agent is mero
rows corresponding to the number of courses, andBagx| position . If it is not, it tries to find a new position

WS Stochastic Search Algorithms 2 1JCAI-03, Acapulco



for the agent and calBvaluation  to update the cur- | Get-Position

rent state. Otherwise, it does nothing. Input: an agent
. . . Output: a new position
4. Get-Position uses the applicable reactive rule to| ;. calculate a probability

find a new position for an agent. 2: if (p = p1) then

3:  position < least-move
Initialization 4: else if(p = p2) then
Input: a problem 5. position < better-move
Output: a random state 6: else
1: Build environment£ and initialize its entries 7: position + random-move
2: for each agentio 8 endif
3:  move to a random position 9: retumposition

4: end for Algorithm 4: Get-Position

Algorithm 1: Initialization

ERA
Input: a problem

Output: a solution

Evaluation ]

Input: a state 1: step < 0

Output: update position values 2: Inltl?hza}tlon

1: for each agent do ?1: \I/Ev\éialgar?c())tnall agents are irzero position or st <
2:  for each position in the current domain of agédo " MAXMOVED 9 P sep =
3 Calculate the position value based on the current assign-5_ Move-Agent

ments of other agents’ 6: " gt 1
4 Store this value - step < step + )
: 7: compare and store solution
5:  end for : :
: 8: end while
6: end for : .
AlGorthm 2 et 9: output solution
orithm 2: evaluation -
g Algorithm 5: ERA

Agent-Move Possible behaviors and some observations

Input: a state Liu et al.[2009 experimented with the following behaviors:
Output: a new state i o

1: for each agentdo e LR is the combination of théeast-moveand random-
2: i (e(i, j).violation=0) then moverules. The agent typically applléasa_st-moveand
3 do nothing usesrandom-movéo get out of a local optimum.

4f else L e BRis the combination of théetter-moveandrandom-
5: j < Get-Position | It is similar toLR t that it |

6: call Evaluatior(state ) moverules. It is similar toLR except that it replaces
7 endif least-movavith better-move

8: end for e BLRis the combination of thbetter-moveleast-move

Algorithm 3: Agent-Move andrandom-moveules. The agent first applidstter-

moveto find its next position. If it fails, it applieER.
5. ERA loops over the agents and keeps moving them until e rBLR: First the agent applies times the rulebetter-

_they are inzero position or a specified number of move In case it fails to find one, it applies th& rule.
iterationsMAXMOVEs reached. When all agents reach o £rg| R: The agent appliesSLR for the firstr iterations
azero position , the pr_oblem is solved and. the so- and then it appliekR, typically r = 2.

lution is returned. Otherwise, the best approximate so- ) ]
lution encountered to date is returned. Liu et al.[2009 further reported the following observations.

] ) ] ] (1) The cost obetter-movén CPU time is much smaller than
Liu et al. [2007 established that the time complexity of that of least-move which requires evaluating all positions.
the ERA algorithmO(n? x Dmax) and its space complex- (2) The chance of successfully finding a position to move to
ity is O(n x Dmax). Further, they demonstrated ERA with ith petter-moves quite high. (3)Better-moveallows most
two benchmark CSPs: the-queen and coloring problems. agents to find better positions at the first step. AndBLR

Both problems have only binary constraints and the ins&nceytperformsBLR, which in turn outperformkR in terms of
tested were solvable. In this paper, we examine the perforntime.

mance of the ERA in solving the more difficult, non-binary,
over-constrained GTA problem. Before we describe our ex - .
periment, we summarize some possible behaviors of an ageht Empirical evaluation of ERA

and the rules that govern the behavior. We also review somé/e tested our implementation on known problem instances.
observations presented by Liu et[#0032. First, we solved the 100-queen problem with different agent
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behaviors’. Then, using=rBLR as the default behavior of 1 ey e .
agents, we solved 8 instances of the GTA problem, including 01 i

solvable and over-constrained cases. We conducted foar mai £ ss |
experiments: we tested the behavior of ERA (Section 3.1),2 |
compared it to that other search techniques (Section 32), o E’As, 7
served the behavior of individual agents (Section 3.3), andg |/
identified a shortcoming of ERA which we call the deadlock % |
phenomenon (Section 3.4). Observations follow each experi $ * 1,
ment and are numbered accordingly. E 0]

Vi Y \VARVARVAR AV

b

- FrBLR
—LR

3.1 Testing the behavior of ERA 201! —BLR
In the following two experiments we recorded the number of 151 : : : : : : : feration
agents reachingero position at every iteration. o 10 20 3 40 5 60 70 & 90 100

Experiment 1. Solve 100-queen problem wittR, BLR and Figure 3:Agents in zero position for Fall2001b.
FrBLR.

Observation 2.2. Fig. 3 shows that the curves f&LR and
00 7 FrBLR ‘vibrate, highlighting an unstable number of agents
in zero position across iterations, whil&R quickly
reaches a stable valuerBLR , which combines R andBLR,
achieves the largest number of agentgéno position

Observation 2.3. After the first few iterations, a large num-
ber of agents seem to reach thedro position with LR
than withBLR. However, the problem seems to quickly be-

95
90
8 I
80 i

75 +

Number of agents in zero position

ol —=Y come ‘rigid’ and the total number of agentszero posi-
- FrBLR tion becomes constant.
65 f —BLR

3.2 Performance Comparison: ERA, LS, and BT

‘ ‘ ‘ ‘ ‘ In order to gather an understanding of the characterisfics o
0 10 2 30 40 50 60 ERA, we compared its performance with that of two other
Figure 2:Agents in zero position in the 100-queen problem.  search strategies we previously implemented. The first stra
egy is a systematic, backtrack search (BT) with dynamic

) . _variable ordering fully described ifGlaubius and Choueiry,
Observation 1.1. FrBLR_ exh|_b|ts the best performance in 2004. The second strategy is a hill-climbing, local search
terms of th_e number of iterations necessary to reach a SO|l{Ls) to be documented ifZou, 2003. LS is a combination
tion, see Fig. 2. Indeed: of constraint propagation to handle non-binary constsaint

e After the first iteration, there are 54 agentszero and the min-conflict random walk algorithm as presented in
position  with LR, 88 withBLR, and 80 withFrBLR.  [Bartak, 1998
ForBLRandFrBLR, over 80% of the agents are already ~As stated in Section 2.2, the GTA problem is over-
in zero position . constrained. We try to find the assignment that covers the
« FIBLR reaches a full, consistent solution after only 5 MOSt tasks and, for an equal solution length, one that maxi-
iterations BLR requires 17 iterations, aricR 56. mizes the arlthme_tlc or geometric average of the p_reference
values of the assignments. In all three searches (i.e., ERA,

This observation is in agreement with the results of Liu etBT, and LS), we store the best solution found so far, so that
al.[2004. We report the following additional observations. the search behaves as an anytime algorithm.

Experiment 2. Solve the GTA problem for the data-set Experiment 3. Solve the GTA problem for the real-world
Fall2001b using-R, BLRandFrBLR. data of Fall2001b, Fall2002 and Spring2003 using ERA, BT
Observation 2.1. The number of agents irero posi- search[Glaubius and Choueiry, 20@2and a hill-climbing,
tion does not grow strictly monotonically with the num- local search techniquou, 2003. Since all the problems
ber of iterations, but may instead exhibit a ‘vibration’ bgh ~ Were difficult to solve (and two of them are indeed unsolv-
ior. This is contrasted with the ‘monotonic’ behavior ofthil  able), we boosted the available resources to transforne thes
climbing techniques and illustrates how ERA allows agentroblems into solvable ones. To accomplish that, we added
to move to norzero position s to avoid local Optima_ extra resourceS‘d'Ummy GTAs-into the da.ta. set. The I‘esu|tS
are shown in Tab. 1 and Figs 4 and 5.

>The n-queen problem is not particularly well-suited for testing ~ We adopted the following working conditions:

the performance of search. However, we use it only to be oma co -
mon level with Liu et al[2004. Indeed, they conducted their tests ¢ 'SA\(?IuSt(i)(;)r? a?tSeF gosseeggg dzeﬁ??iﬁfelrﬂa?leedto find a better
on then-queen and the coloring problems, and drew their conclu- ’ pted.

sions from then-queen problem. e The maximum iteration number for LS and ERA is 200.

60

iteration
55
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00 O |00 IO |[N [ |[O) [ [ ]
until one of the search techniques could find a solus< (501220 |22 C 1TSS 2R
tion. The solvable instance thus obtained may have morgi -
GTAs that it is actually needed. S |[2nosay aiqelreny g g > g g g 2 g <

e The ratio oftotal capacity and total load 8 ol
(shown in column 7 in Tab. 1) is an indicator of the tight- | SVLO pasnun || @ (o |- = o |1
ness of the problem. When it is less than 1, the instancgs N o N | A A e e |
is over-constrained and guaranteed not solvable. Othel&? Arend uonnjos S 2 ; g g g g g I
wise, it may or may not have a full solution. = ]

We compared the search techniques according to five criterig@spsinod paubisseun o Ri|lee|lo (oo (S

1. Unassigned courseshe number of courses that are not [ o o o o fo v ka1
assigned a GTA (col. 8, 13 and 18 in Tab. 1). The pri- (50T>)00 || @ 11317190 17410 1N 11
mary goal is to minimize this value. > ]

2. Solution quality the geometric average of the prefer- i 82IN0SsaYy 9|qe|lery fg 8 ﬁ ; 3 2 3 2 =
ences, with values [1,5] (col. 9, 14, and 19 in Tab. 1). [S —
A larger value indicates a better solution. § sY19 pasnun oo |ee|ee|lb

3. Unused GTAsthe number of GTAs not assigned to any Ei o 1< | I [lo et e foo :
task (col. 10, 15, and 20 in Tab. 1). This valueis usefultgS|| ~ Aurend uonnjos | k212 G 11N K315 12 1S
analyze why certain resources are not used by the sear *h -
mechanism, useful feedback in the hiring process. spsino) paubisseun (v (3 (& ;| = || = |9

4. Available resourceghe cumulative value of the remain- [~ o = ko llo ko b 1|
ing capacity of all GTAs after assignment (col. 11, 16, |~ (L01X) 20 |[NRINE RN
and 21 in Tab. 1). This provides an estimate of whethe(@, o D e o | N
a search strategy is wasteful of resources. S |[e0inosey ajqejeny 3 2 2 0 g © ::_ : -

5. CC: the number of constraint checks, counted using the$ -
convention of Bacchus and Van BelEacchus and van ﬂ sy19 pashun |Nnollele|lolelne (S
Beek, 1998 (col. 12, 17, and 22 in Tab. 1). k5 -

_ _ gl & SR (NN 2EB|2e
Observation 3.1. Only ERA was able to find a full solution | Hend uonnjos |12 5155 B IS 1S 1%
to all solvable problems (column 18 of Tab. 1). Both BT and|® —
LS failed for all these instances. In this respect, ERA djear | $psinoo paubisseun |[© G|/ o[ [ {[oo oo |l
outperforms the other two strategies and avoids gettingkstu = —
in useless portions of the search space. AL _ ooy, SRIEB|INB (BB

. . . 1ede)Es0 - (O || [ [ (O || [
Observation 3.2. When the ratio of total capacity to total -

load is greater than 1 (problem may or may not be solvable O (O || 0 1] ) |y [[SE S
' 0| [e10 o

ERA clearly outperforms BT and LS. Conversely, when the PEOITEICL IR R IRR [P N N
ratio is less than 1 (problem is necessarily over-constdjin oo lo ol ]
ERA's performance is the worst, as shown in Fig. 4. Indeed, Ayoedeo fejoL (3R (3|3 |IS | SINE
we make the conjecture that ERA is not a reliable technique ]
for solving over-constrained problems. sasinod# BB 1S |I59 I IS IS |Is
- |

- W SVLO# B Q[ 5 (183 1R || (S5 ||

| O systematic search a eBIGeAI0S |I]x IS x [Pl

.20 Olocal search L
g W multi-agent paisoog/reuibl (@O |0 (O |lm O |jn (O |-
- o
@ (8]
c c
7 o
g = e BN
: g g | B |2
S B 18 |8 |

2R IR I |5

spring fall02 spring 03 fall01b  fall01b spring 03  spring fall 02 (?)- E E (?)- 8

01b (0.88)  (0.88) (1.00)  (1.02)  (1.06)  (1.08) 01b(1.18) (1.27) L L

data set (ratio)

Figure 4:Unassigned courses

WS Stochastic Search Algorithms

We increased the number of dummy GTAs, one at time| |

Table 1:Comparison between BT, LS, and ER#&ategies O/B in-
dicates whether the instance is original or boos€@is the number
of constraint checks.
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Observation 3.3. On average (see Fig. 5), LS performs much
fewer constraint checks than ERA, which performs fewer

45 -
spring 2001b (O)

40

constraint checks than BT.

This feature of LS is useful when checking constraints

(e.g., non-binary constraints) is a costly operation.

100%1"
0%
80%1"
70%4
60%f
50%4
0%
0%t
20% 4
10%1"

0%-

B o B [¢] B o B [e]
spring2001b fall2001b fall2002 spring2003

\D systematic search Olocal search W multi-agent

Figure 5:Constraint checks

N} w w
@ S @

N
o

# agents in zero position

15 fall 2002 (O)

iteration
A

1 20 39 58 v 96 115 134 153 172 191

Figure 7:ERA performance on unsolvable problems

variable

stable

|

N
3

o

1 51 101 151 201 251 301 351 401 451

index of position

constant

Observation 3.4. ERA leaves more GTAs unassigned than
BT orLS (col. 10, 15, and 20 in Tab. 1), which raises concerns
about its ability to effectively exploit the available resoes.

In particular, for Spring2001b (O), 8 GTAs remain un-
used. This alarming situation prompted us to closely exam-
ine the solutions generated, which yielded our identiforati
of the deadlock phenomenatiscussed in Section 3.4. Fi-
nally, we compared the behavior of ERA on solvable and
unsolvable problems in terms of the number of agents in
zero position per iteration. The solvable problems
are: Spring2001b (B), Fall2001b (B/O), Fall2002 (B), and

1 51 101 151 201 251 301 351 401 451
. iteration
Figure 8:Types of agent movement

e Variable: the agent changes its position relatively fre-

quently and fails to find itzero position
e Stable: the agent rarely changes its position.
e Constant: the agent findszaro position

at the be-

Spring2003 (B/O) (Fig. 6).
Spring2001b (O) and Fall2002 (O) (Fig. 7).

Observation 3.5.Fig. 6 and Fig. 7 show that the performance
of ERA is more stable when solving solvable problems tha

when solving unsolvable problems.

~
o
R

spring 2001b (B

o o o
o S o

o
=]

J spring 2003

] / fall 2002 (B)

# agents in zero position
N W oW s B
o o o o O
1

N
o
-

o

The unsolvable ones include

)
U%v /

iteration

1 20 39 58 7 96 115 134 153 172

Figure 6:ERA performance on solvable problems

3.3 Observing behavior of individual agents

Tracking the positions of individual agents at variousdter

191

ginning of the search, and never changes it.

Experiment 4. We set the maximum number of iterations to
500 and tracked the positions of agents over the entire data
set, grouped into solvable and unsolvable instances.

n

Observation 4.1. In solvable instances, most agents are sta-
ble, and a few are constant. None of the agents is variable.

Observation 4.2. In unsolvable instances, most agents are
variable, and a few are stable. None of the agents is constant

3.4 The deadlock phenomenon

On our two unsolvable instances of Tab. 1 (i.e.,
Spring2001b (O) and Fall2002 (O)), ERA left some tasks
unassigned (col. 18) and some resources unused (col. 20),
although, in principle, better solutions could be reached.
By carefully analyzing these situations, we uncovered the
deadlock phenomenprwhich is a major shortcoming of
ERA and may hinder its usefulness in practice.

Experiment 5. with the Spring2001b (O) data, we examined
the positions of each agent in the state corresponding to the
best approximate solution found, and analyzed the allogati

of resources to tasks.

tions, we observed the three types of agent movement shown The best approximate solution for this problem was found
in Fig. 8. In this figure, we used the index of the agent’s po-at iteration 197, with 24 courses unassigned and 8 GTAs un-

sition to indicate its assigned value.

WS Stochastic Search Algorithms

used. The total number of courses in this problem is 65.
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Observation 5.1. We observed that the unsatisfied courses This problem was not reported in previous implementa-
can actually be serviced by the available, unused GTAs. ERAions of ERA, likely because they were not tested on over-
was not able to do the assignment for the following reasonconstrained cases. Further, it seriously hinders the agapli
There were several unsatisfied agents (i.e., coursesitbs¢c bility of this technique to unsolvable problentiss important

to move to a position in their respective rows correspondinghat ERA be modified and enhanced with a conflict resolution
to the same available GTA, while this GTA could only be as-mechanism that allows it to identify and solve deadlocks.
signed to as many agents as its capacity would allow. This

situation resulted in constraints beln_g broken and the-posiy Discussion

tion values never becominzero position s for any of

the agents. As a consequence, although agents moved to thae further discuss the performance of ERA.

position, none could be assigned that position, and thecorr

sponding GTA remained unassigned. 4.1 Better-move vs. least-move

We illustrate this situation in Fig. 9. Each circle corre- A k€Y pointin iterative-improvement strategies is to idnt
a good neighboring state. In ERA, this is achieved by the re-

active rules. In Minton et al.1994, this is the min-conflict
heuristic. We noticed thabetter-moveprovides more op-
portunities to explore the search space tle@ast-movealoes,
and avoids getting stuck in local optima. Wigast-moven
agent moves to its best position where it stays. This ine®as
the difficulties of other agents and the complexity of thegpro
lem, which quickly becomes harder to solve.

O agentin zero position

B agentin deadlock

4.2 Reactive behaviors

Different behaviors significantly affect the performande o
ERA. We found thafrBLR results in the best behavior in

& agorns meived in deadiodk: 24 terms of runtime and solution quality. At the beginning a th
f# unused GTAs: 8 searchbetter-movecan quickly guide more agents towards

their zero position . Thenleast-moveprevents drastic
changes in the current state while allowing agents to imgrov

) ) _their positions. Finallyandom-movealeals effectively with
sponds to a given GTA, note that there is exactly one circlgyjateau situations and local optima.

per GTA. Each square represents an agent. There may be zero

or more squares on a given circle. Blank squares indicate thay 3 Global vs. local repair
the position is &ero position for the agent; these will
yield effective assignments. The filled squares indicaat t
although the position is the best one for the agent, it regult
some broken constraints. Thus itis na@exo position

Figure 9:Deadlock state

h Our implementation of local search, a hill-climbing stgte
with a combination of a min-conflict heuristic and propa-
gation of capacity constraints, does not undo consistent as

and the actual assignment of the position to the agent canng{gnments. No variable is repaired more than once. Once

be made. The circles populated by several filled squares af Variable has a consistent assignment, this assignment is
GTASs that remain unused. never undone. Repairs are done locally, to one variable at

a time, which monotonically increases the number of instan-
Definition 1. Deadlock stata/Vhen a subset of agents com- tiated variables. In practice, such an approach seems to get
petes for positions that are mutually exclusive but the onlyquickly stuck in local optima, which is unlikely to be over-
positions acceptable for them, a deadlock occurs that pteve come even with random restaftdoos and Stiitzle, 1999
all agents from being assigned this position. In ERA, however, there is no such restriction. An agent
can undo its assignment as needed, even if it is a consistent

some could be. Further, a deadlock causes the behavior pe. This feature of ERA seems to be the major reason why

ERA to degrade. When some agents are in a deadlock statk S @Ple to solve successtully large, tight problems theat r
one would hope that the independence of the agents woul%'gted the other techniques we tested (i.e., solvableriosta

allow them to get out of the deadlock (or remain in it) without of Tab. 1 were only solved b.y ERA).
affecting the status of agentsero position In ERA, each agent has its own local goal—to move to a

minimal violation-value position. During search, eachrage
Observation 5.2. ERA is not able to avoid deadlocks and focuses on achieving its local goal. The global goal of mini-
yields a degradation of the solution. Indeed, subsequent itmizing conflicts of a state is implicitly controlled by thevén
erations of ERA, instead of moving agents out of deadlockonmentE, through which the agents ‘communicate.’” This
situations, moved agents alreadyzero position out communication medium is effective when the problem is
their positions and attempt to find othegro position s  solvable, because agents are always able to find a ‘better po-
for them. The current best solution is totally destroyed| an sition’ to move to. It also increases the ‘freedom’ of an &gen
the behavior of the system degrades. to explore its search space, which allows search to avoal loc

None of the variables in a deadlock is instantiated, althoug
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optima. This decentralized control is contrasted with the-c 1. Development of conflict resolution strategies to over-
tralized control used in local search where the neighboring  come deadlocks. Note that the ability of ERA to isolate
states are evaluated globally by a centralized function. the deadlock is a significant advantage in this task.

2. Experiment with search hybridization techniques with

4.4 Softvs. hard assignment LS, which can reach and maintain a good quality ap-

We identify two main strategies to handle deadlocks: proximate solution within the first few iterations.
Definition 2. Hard assignmentnone of the variables is as- 3. Further, we plan to expand our study to include tech-
signed the value. niques such as randomized systematic sef@dmes
Definition 3. Soft assignmentusing some conflict resolu- et al, 1994, the squeaky wheel methddoslin and
tion strategy, some of the variables are assigned the value i  Clements, 1999 and market-based techniquiSand-

holm, 2003, in a setting similar to the ‘algorithm port-
folios’ of [Gomes and Selman, 2001

4. Finally, we plan on conducting a more thorough empir-
ical evaluation of the behavior of the various algorithms
on randomly generated problems following the method-
ology of[Hoos, 1998; Hoos and Stiitzle, 1999

a manner that respects its capacity constraint.

The former strategy is implemented in ERA and results in

fewer variables being instantiated. The latter is adoptesili

and LS and results in more variables being instantiated. We
believe that the former strategy is more appropriate intprac
cal settings becausedtearly delimits the sources of conflict
and makes them the responsibility of a subsequent conflict _ _
resolution process. Indeed, conflictidentification is ficlift ~ Acknowledgments. This research is supported by NSF grant
task (perhaps NP-hard) and ERA may well be an effectivéEPS-0091900. We are grateful to Deb Derrick for editoredph

strategy to approach it.
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