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Abstract

In this paper, we extend the empirical study of a
multi-agent search method for solving a Constraint
Satisfaction Problem (CSP)[Liu et al., 2002]. We
compare this method’s performance with that of a
local search (LS) and a systematic (BT) search, in
the context of a real-world application that is over-
constrained—the assignment of Graduate Teaching
Assistants (GTA) to academic tasks. We report
our observations and summarize our analysis of the
main features and limitations of this multi-agent
search. We show that for solvable, tight CSPs,
multi-agent search clearly outperforms both LS and
BT, as it finds a solution when the other two tech-
niques fail. However, for over-constrained prob-
lems, the multi-agent search method degenerates in
terms of stability and the quality of the solutions
reached. We identify the source of this shortcom-
ing and characterize it as a deadlock phenomenon.

1 Introduction
A Constraint Satisfaction Problem (CSP) is defined by

� �
�� �� � � �

where
�

is a set of variables,
�

the set of their re-
spective domains, and

�
is a set of constraints that restricts

the acceptable combination of values for variables. Solving a
CSP requires assigning a value to each variable such that all
constraints are simultaneously satisfied, which is in general
NP-complete. CSPs are used to model a wide range of deci-
sion problems, thus they are important in practical settings.

Search algorithms for solving CSPs are usually classified
into two main categories: local search and systematic algo-
rithms. Recently, Liu et al.[2002] proposed a competitive
multi-agent based technique. In this paper, we analyze the
behavior of a multi-agent based approach, ERA of Liu et al.
[2002], in solving an over-constrained practical problem: the
assignment of graduate teaching assistants (GTA problem) to
academic tasks1. We compare the behavior of the multi-agent
approach to two other approaches we have implemented to
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Timetabling Problem (ETP) defined in[Schaerf and Meisels, 2000].

solve this problem: a systematic, backtrack search and a hill-
climbing, local search. We stress that our investigations are
motivated by, and focus on, the GTA problem of which we
have collected a few, but real, data samples. Consequently,
our experiments are exploratory in nature. More thorough ex-
periments, in a methodology similar to that of[Hoos, 1998],
still need to be carried out to validate our conclusions.

The results of our study can be summarized as follows. The
multi-agent approach exhibits the best ability to recover from
local optima due to its goal-directed behavior and communi-
cation capabilities. As a result, the multi-agent approachcan
solve tight CSPs when the other two approaches fail. How-
ever, with unsolvable problems, its behavior becomes erratic
and unreliable. We were able to trace this shortcoming to the
same feature that constitutes the strength of this approach, i.e.
the inter-agent communication mechanism, which results ina
deadlock state in over-constrained situations.

This paper is structured as follows. Section 2 introduces
multi-agent based search, the GTA problem, and the ERA
model. Section 3 describes five experiments and summa-
rizes our observations. Section 4 discusses the relative per-
formance of the methods tested. Finally, Section 5 provides
direction for future research.

2 Background
Here we summarize the principle of the multi-agent based
search and describe the main features of our particular ap-
plication. We then explain how the application relates to the
principle.

2.1 A Multi-agent-based method
A multi-agent system is a computational system in which sev-
eral agents interact and work together in order to achieve a
set of goals. Inspired by swarm intelligence, Liu et al.[2002]
proposed a search method for solving CSPs based on a multi-
agent approach in which every variable is represented by a
single, independent agent. A two-dimensional grid-like envi-
ronment, inhabited by the agents, corresponds to the domains
of variables. Thus, the positions of the agents in such an en-
vironment constitute the solution to a CSP.

Liu et al. [2002] presented an algorithm, called ERA (i.e.,
Environment, Reactive rules, and Agents), that is an alterna-
tive, multi-agent formulation for solving a general CSP. Al-
though ERA can be viewed as an extension to local search, it



differs from local search in some subtle ways. Moving from
one state to another in local search typically involves chang-
ing the assignment of one (or two) variables, thus the name
local search. In multi-agent search, any number of variables
can change positions at each move; each agent chooses its
most convenient position (e.g., value). The evaluation func-
tion that assesses the quality of a given state in local search is
a global account of the quality of the state (typically the total
number of broken constraints). In ERA, the value of the state
is a combination of the value of the individual agents (typ-
ically the number of broken constraints of an agent). ERA
appears to decentralize the global control of the selectionof
the next state to the individual agents.

2.2 Graduate Teaching Assistants (GTA) problem
As a real-world CSP, the GTA problem is defined as follows.
In a semester, given a set of graduate teaching assistants, a
set of courses, and a set of constraints that specify allowable
assignments, find a consistent and satisfactory assignmentof
GTAs to courses[Glaubius and Choueiry, 2002]. In prac-
tice, this problem is over-constrained. Typically there are not
enough GTAs to cover all tasks, and some courses may have
no GTA assigned to them. The goal of the GTA problem is
to ensure GTA support to as many courses as possible. We
measure the quality of a solution primarily by the number of
courses assigned to a GTA. A secondary criterion is to maxi-
mize the arithmetical or geometric average of the assignments
since each GTA expresses a preference value (between 0 and
5) for each course.

In the GTA problem, the courses are modeled as variables
and the GTAs are the values. There are a number of unary,
binary and non-binary constraints that model the rules gov-
erning the assignments. In particular, each course has a load.
The total loadof a semester is the maximum of the cumula-
tive load of the individual courses (in our setting, the semester
has two parts that do not always have equal loads). Further,
each GTA has a capacity factor, which is constant through-
out the semester and indicates the maximum course weight
he or she can be assigned at any point in time during the
semester. The sum of the capacities of all GTAs’ represents
theresource capacity. A detailed description of the problem,
the constraints, and the solution derived by using a backtrack
search can be found in[Glaubius and Choueiry, 2002].

2.3 ERA model
An ERA system has three components: an Environment (� ),
a set of Reactive rules (� ), and a set of Agents (�). The en-
vironment records the number of constraint violations of the
current state for each value in the domains of all variables.
Each variable is an agent, and the position of the agent cor-
responds to the value assigned to this variable. The agent
moves according to its reactive rules. Three assumptions are
made: all agents have the same reactive rules; an agent can
only move to positions in its own domain; and agents move
in sequence and not at the same time.

Environment
An environment� is a two-dimensional array that has�
rows corresponding to the number of courses, and has����� �

columns where
����

is the size of the largest domain. The
entry 	 �
 � � � � 
����
�� in the environment� refers to a po-
sition at row



(representing Agent



) and column

�
(repre-

senting the value of index
�

in the domain of Agent


). It

stores a list of two values for Agent


in position

�
, namelydo-

main valueandviolation value. Domain value,	 �
 � � � � ���	,
is the current value assigned to an agent. Violation value,	 �
 � � � � 
����
��, is the number of constraints broken by the
current assignment of an agent. Fig. 1 illustrates the environ-
ment� of in the GTA problem. Each course is an agent, and
each cell records two values of the agent: the domain value
(i.e., a GTA) and the violation value. This violation value
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Figure 1:The data structure of environment� .

of an agent is also called itsposition value . A zero
position is a position for the agent that does not break
any of the constraints that apply to it. That means the current
assignment of the agent is consistent with the other agents’
assignments. Obviously, if agents are all in zero positions,
then we have a full, consistent solution. The information in� is updated when an agent changes position. The goal is to
have each agent find itszero position .

Reactive rules
Liu et al.[2002] define three reactive rules,� , that govern the
interaction between an agent and the environment:

1. Least-move: The agent chooses the position with the
minimal value and moves to it, breaking ties randomly.

2. Better-move: The agent chooses a position at random. If
the chosen position has a smaller value than the current
position value, then the agent moves to it. Otherwise the
agent keeps its current position.

3. Random-move: With a probability� , the agent randomly
chooses a position to move to. This rule avoids the pos-
sibility of the agent getting stuck ina local optimum.

Agent
A variable is represented by an agent. At each state, the
agents choose a position to move to following the reactive
rules. The agents will keep moving until all have reached
zero position or a certain time period has elapsed.

ERA algorithm
The ERA algorithm has the following five main functions:

1. Initialization builds the environment� , gener-
ates a random position for each agent, and moves the
agent to this position.

2. Evaluation calculates the violation value of each
possible position for each agent.

3. Agent-Move checks whether an agent is inzero
position . If it is not, it tries to find a new position

WS Stochastic Search Algorithms 2 IJCAI-03, Acapulco



for the agent and callsEvaluation to update the cur-
rent state. Otherwise, it does nothing.

4. Get-Position uses the applicable reactive rule to
find a new position for an agent.

Initialization
Input: a problem
Output: a random state
1: Build environment� and initialize its entries
2: for each agentdo
3: move to a random position
4: end for

Algorithm 1: Initialization

Evaluation
Input: a state
Output: update position values
1: for each agent� do
2: for each position in the current domain of agent� do
3: Calculate the position value based on the current assign-

ments of other agents’
4: Store this value
5: end for
6: end for

Algorithm 2: evaluation

Agent-Move
Input: a state
Output: a new state
1: for each agent� do
2: if (� �� � � � �� ��	
����=0) then
3: do nothing
4: else
5: �  Get-Position
6: call Evaluation(state )
7: end if
8: end for

Algorithm 3: Agent-Move

5. ERA loops over the agents and keeps moving them until
they are inzero position or a specified number of
iterationsMAXMOVEis reached. When all agents reach
a zero position , the problem is solved and the so-
lution is returned. Otherwise, the best approximate so-
lution encountered to date is returned.

Liu et al. [2002] established that the time complexity of
the ERA algorithm� �� � � ���� �

and its space complex-
ity is � �� � ���� �

. Further, they demonstrated ERA with
two benchmark CSPs: the�-queen and coloring problems.
Both problems have only binary constraints and the instances
tested were solvable. In this paper, we examine the perfor-
mance of the ERA in solving the more difficult, non-binary,
over-constrained GTA problem. Before we describe our ex-
periment, we summarize some possible behaviors of an agent
and the rules that govern the behavior. We also review some
observations presented by Liu et al.[2002].

Get-Position
Input: an agent
Output: a new position
1: calculate a probability�
2: if (� � � �) then
3: � �������  least-move
4: else if(� � � �) then
5: � �������  better-move
6: else
7: � �������  random-move
8: end if
9: return� �������

Algorithm 4: Get-Position

ERA
Input: a problem
Output: a solution
1: ����  �
2: Initialization
3: Evaluation
4: while not all agents are inzero position or ���� �

MAXMOVEdo
5: Move-Agent
6: ����  ���� � �
7: compare and store solution
8: end while
9: output solution

Algorithm 5: ERA

Possible behaviors and some observations
Liu et al. [2002] experimented with the following behaviors:

� LR is the combination of theleast-moveand random-
moverules. The agent typically appliesleast-moveand
usesrandom-moveto get out of a local optimum.

� BR is the combination of thebetter-moveandrandom-
moverules. It is similar toLR except that it replaces
least-movewith better-move.

� BLR is the combination of thebetter-move, least-move
andrandom-moverules. The agent first appliesbetter-
moveto find its next position. If it fails, it appliesLR.

� rBLR : First the agent applies� times the rulebetter-
move. In case it fails to find one, it applies theLR rule.

� FrBLR : The agent appliesrBLR for the first� iterations
and then it appliesLR, typically � � �

.

Liu et al. [2002] further reported the following observations.
(1) The cost ofbetter-movein CPU time is much smaller than
that of least-move, which requires evaluating all positions.
(2) The chance of successfully finding a position to move to
with better-moveis quite high. (3)Better-moveallows most
agents to find better positions at the first step. And (4)FrBLR
outperformsrBLR , which in turn outperformsLR in terms of
runtime.

3 Empirical evaluation of ERA
We tested our implementation on known problem instances.
First, we solved the 100-queen problem with different agent
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behaviors2. Then, usingFrBLR as the default behavior of
agents, we solved 8 instances of the GTA problem, including
solvable and over-constrained cases. We conducted four main
experiments: we tested the behavior of ERA (Section 3.1),
compared it to that other search techniques (Section 3.2), ob-
served the behavior of individual agents (Section 3.3), and
identified a shortcoming of ERA which we call the deadlock
phenomenon (Section 3.4). Observations follow each experi-
ment and are numbered accordingly.

3.1 Testing the behavior of ERA
In the following two experiments we recorded the number of
agents reachingzero position at every iteration.

Experiment 1. Solve 100-queen problem withLR, BLRand
FrBLR .
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Figure 2:Agents in zero position in the 100-queen problem.

Observation 1.1. FrBLR exhibits the best performance in
terms of the number of iterations necessary to reach a solu-
tion, see Fig. 2. Indeed:

� After the first iteration, there are 54 agents inzero
position with LR, 88 withBLR, and 80 withFrBLR .
ForBLRandFrBLR , over 80% of the agents are already
in zero position .

� FrBLR reaches a full, consistent solution after only 5
iterations.BLRrequires 17 iterations, andLR 56.

This observation is in agreement with the results of Liu et
al. [2002]. We report the following additional observations.

Experiment 2. Solve the GTA problem for the data-set
Fall2001b usingLR, BLRandFrBLR .

Observation 2.1. The number of agents inzero posi-
tion does not grow strictly monotonically with the num-
ber of iterations, but may instead exhibit a ‘vibration’ behav-
ior. This is contrasted with the ‘monotonic’ behavior of hill-
climbing techniques and illustrates how ERA allows agents
to move to non-zero position s to avoid local optima.

2The�-queen problem is not particularly well-suited for testing
the performance of search. However, we use it only to be on a com-
mon level with Liu et al.[2002]. Indeed, they conducted their tests
on the�-queen and the coloring problems, and drew their conclu-
sions from the�-queen problem.
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Figure 3:Agents in zero position for Fall2001b.

Observation 2.2. Fig. 3 shows that the curves forBLR and
FrBLR ‘vibrate,’ highlighting an unstable number of agents
in zero position across iterations, whileLR quickly
reaches a stable value.FrBLR , which combinesLRandBLR,
achieves the largest number of agents inzero position .

Observation 2.3. After the first few iterations, a large num-
ber of agents seem to reach theirzero position with LR
than withBLR. However, the problem seems to quickly be-
come ‘rigid’ and the total number of agents inzero posi-
tion becomes constant.

3.2 Performance Comparison: ERA, LS, and BT
In order to gather an understanding of the characteristics of
ERA, we compared its performance with that of two other
search strategies we previously implemented. The first strat-
egy is a systematic, backtrack search (BT) with dynamic
variable ordering fully described in[Glaubius and Choueiry,
2002]. The second strategy is a hill-climbing, local search
(LS) to be documented in[Zou, 2003]. LS is a combination
of constraint propagation to handle non-binary constraints
and the min-conflict random walk algorithm as presented in
[Barták, 1998].

As stated in Section 2.2, the GTA problem is over-
constrained. We try to find the assignment that covers the
most tasks and, for an equal solution length, one that maxi-
mizes the arithmetic or geometric average of the preference
values of the assignments. In all three searches (i.e., ERA,
BT, and LS), we store the best solution found so far, so that
the search behaves as an anytime algorithm.

Experiment 3. Solve the GTA problem for the real-world
data of Fall2001b, Fall2002 and Spring2003 using ERA, BT
search[Glaubius and Choueiry, 2002], and a hill-climbing,
local search technique[Zou, 2003]. Since all the problems
were difficult to solve (and two of them are indeed unsolv-
able), we boosted the available resources to transform these
problems into solvable ones. To accomplish that, we added
extra resources—dummy GTAs—into the data set. The results
are shown in Tab. 1 and Figs 4 and 5.

We adopted the following working conditions:
� As soon as BT search becomes unable to find a better

solution after 20 seconds, it is interrupted.
� The maximum iteration number for LS and ERA is 200.
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� We increased the number of dummy GTAs, one at time,
until one of the search techniques could find a solu-
tion. The solvable instance thus obtained may have more
GTAs that it is actually needed.

� The ratio of total capacity and total load
(shown in column 7 in Tab. 1) is an indicator of the tight-
ness of the problem. When it is less than 1, the instance
is over-constrained and guaranteed not solvable. Other-
wise, it may or may not have a full solution.

We compared the search techniques according to five criteria:

1. Unassigned courses: the number of courses that are not
assigned a GTA (col. 8, 13 and 18 in Tab. 1). The pri-
mary goal is to minimize this value.

2. Solution quality: the geometric average of the prefer-
ences, with values� �� � �� (col. 9, 14, and 19 in Tab. 1).
A larger value indicates a better solution.

3. Unused GTAs: the number of GTAs not assigned to any
task (col. 10, 15, and 20 in Tab. 1). This value is useful to
analyze why certain resources are not used by the search
mechanism, useful feedback in the hiring process.

4. Available resources: the cumulative value of the remain-
ing capacity of all GTAs after assignment (col. 11, 16,
and 21 in Tab. 1). This provides an estimate of whether
a search strategy is wasteful of resources.

5. CC: the number of constraint checks, counted using the
convention of Bacchus and Van Beek[Bacchus and van
Beek, 1998] (col. 12, 17, and 22 in Tab. 1).

Observation 3.1. Only ERA was able to find a full solution
to all solvable problems (column 18 of Tab. 1). Both BT and
LS failed for all these instances. In this respect, ERA clearly
outperforms the other two strategies and avoids getting stuck
in useless portions of the search space.

Observation 3.2. When the ratio of total capacity to total
load is greater than 1 (problem may or may not be solvable),
ERA clearly outperforms BT and LS. Conversely, when the
ratio is less than 1 (problem is necessarily over-constrained),
ERA’s performance is the worst, as shown in Fig. 4. Indeed,
we make the conjecture that ERA is not a reliable technique
for solving over-constrained problems.
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Table 1:Comparison between BT, LS, and ERA.strategies O/B in-
dicates whether the instance is original or boosted.CCis the number
of constraint checks.
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Observation 3.3.On average (see Fig. 5), LS performs much
fewer constraint checks than ERA, which performs fewer
constraint checks than BT.

This feature of LS is useful when checking constraints
(e.g., non-binary constraints) is a costly operation.
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Figure 5:Constraint checks

Observation 3.4. ERA leaves more GTAs unassigned than
BT or LS (col. 10, 15, and 20 in Tab. 1), which raises concerns
about its ability to effectively exploit the available resources.

In particular, for Spring2001b (O), 8 GTAs remain un-
used. This alarming situation prompted us to closely exam-
ine the solutions generated, which yielded our identification
of the deadlock phenomenondiscussed in Section 3.4. Fi-
nally, we compared the behavior of ERA on solvable and
unsolvable problems in terms of the number of agents in
zero position per iteration. The solvable problems
are: Spring2001b (B), Fall2001b (B/O), Fall2002 (B), and
Spring2003 (B/O) (Fig. 6). The unsolvable ones include
Spring2001b (O) and Fall2002 (O) (Fig. 7).

Observation 3.5.Fig. 6 and Fig. 7 show that the performance
of ERA is more stable when solving solvable problems than
when solving unsolvable problems.
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Figure 6:ERA performance on solvable problems

3.3 Observing behavior of individual agents
Tracking the positions of individual agents at various itera-
tions, we observed the three types of agent movement shown
in Fig. 8. In this figure, we used the index of the agent’s po-
sition to indicate its assigned value.
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� Variable: the agent changes its position relatively fre-
quently and fails to find itszero position .

� Stable: the agent rarely changes its position.
� Constant: the agent finds azero position at the be-

ginning of the search, and never changes it.

Experiment 4. We set the maximum number of iterations to
500 and tracked the positions of agents over the entire data
set, grouped into solvable and unsolvable instances.

Observation 4.1. In solvable instances, most agents are sta-
ble, and a few are constant. None of the agents is variable.

Observation 4.2. In unsolvable instances, most agents are
variable, and a few are stable. None of the agents is constant.

3.4 The deadlock phenomenon
On our two unsolvable instances of Tab. 1 (i.e.,
Spring2001b (O) and Fall2002 (O)), ERA left some tasks
unassigned (col. 18) and some resources unused (col. 20),
although, in principle, better solutions could be reached.
By carefully analyzing these situations, we uncovered the
deadlock phenomenon, which is a major shortcoming of
ERA and may hinder its usefulness in practice.

Experiment 5. with the Spring2001b (O) data, we examined
the positions of each agent in the state corresponding to the
best approximate solution found, and analyzed the allocation
of resources to tasks.

The best approximate solution for this problem was found
at iteration 197, with 24 courses unassigned and 8 GTAs un-
used. The total number of courses in this problem is 65.
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Observation 5.1. We observed that the unsatisfied courses
can actually be serviced by the available, unused GTAs. ERA
was not able to do the assignment for the following reason.
There were several unsatisfied agents (i.e., courses) that chose
to move to a position in their respective rows corresponding
to the same available GTA, while this GTA could only be as-
signed to as many agents as its capacity would allow. This
situation resulted in constraints being broken and the posi-
tion values never becomingzero position s for any of
the agents. As a consequence, although agents moved to that
position, none could be assigned that position, and the corre-
sponding GTA remained unassigned.

We illustrate this situation in Fig. 9. Each circle corre-

# total agents : 65

# agents involved in deadlock: 24

# unused GTAs: 8

ff

agent in zero position

agent in deadlock

Figure 9:Deadlock state

sponds to a given GTA, note that there is exactly one circle
per GTA. Each square represents an agent. There may be zero
or more squares on a given circle. Blank squares indicate that
the position is azero position for the agent; these will
yield effective assignments. The filled squares indicate that
although the position is the best one for the agent, it results in
some broken constraints. Thus it is not azero position ,
and the actual assignment of the position to the agent cannot
be made. The circles populated by several filled squares are
GTAs that remain unused.

Definition 1. Deadlock state:When a subset of agents com-
petes for positions that are mutually exclusive but the only
positions acceptable for them, a deadlock occurs that prevents
all agents from being assigned this position.

None of the variables in a deadlock is instantiated, although
some could be. Further, a deadlock causes the behavior of
ERA to degrade. When some agents are in a deadlock state,
one would hope that the independence of the agents would
allow them to get out of the deadlock (or remain in it) without
affecting the status of agents inzero position .

Observation 5.2. ERA is not able to avoid deadlocks and
yields a degradation of the solution. Indeed, subsequent it-
erations of ERA, instead of moving agents out of deadlock
situations, moved agents already inzero position out
their positions and attempt to find otherzero position s
for them. The current best solution is totally destroyed, and
the behavior of the system degrades.

This problem was not reported in previous implementa-
tions of ERA, likely because they were not tested on over-
constrained cases. Further, it seriously hinders the applica-
bility of this technique to unsolvable problems.It is important
that ERA be modified and enhanced with a conflict resolution
mechanism that allows it to identify and solve deadlocks.

4 Discussion
We further discuss the performance of ERA.

4.1 Better-move vs. least-move
A key point in iterative-improvement strategies is to identify
a good neighboring state. In ERA, this is achieved by the re-
active rules. In Minton et al.[1992], this is the min-conflict
heuristic. We noticed thatbetter-moveprovides more op-
portunities to explore the search space thanleast-movedoes,
and avoids getting stuck in local optima. Withleast-movean
agent moves to its best position where it stays. This increases
the difficulties of other agents and the complexity of the prob-
lem, which quickly becomes harder to solve.

4.2 Reactive behaviors
Different behaviors significantly affect the performance of
ERA. We found thatFrBLR results in the best behavior in
terms of runtime and solution quality. At the beginning of the
searchbetter-movecan quickly guide more agents towards
their zero position . Then least-moveprevents drastic
changes in the current state while allowing agents to improve
their positions. Finallyrandom-movedeals effectively with
plateau situations and local optima.

4.3 Global vs. local repair
Our implementation of local search, a hill-climbing strategy
with a combination of a min-conflict heuristic and propa-
gation of capacity constraints, does not undo consistent as-
signments. No variable is repaired more than once. Once
a variable has a consistent assignment, this assignment is
never undone. Repairs are done locally, to one variable at
a time, which monotonically increases the number of instan-
tiated variables. In practice, such an approach seems to get
quickly stuck in local optima, which is unlikely to be over-
come even with random restarts[Hoos and Stützle, 1999].

In ERA, however, there is no such restriction. An agent
can undo its assignment as needed, even if it is a consistent
one. This feature of ERA seems to be the major reason why
it is able to solve successfully large, tight problems that re-
sisted the other techniques we tested (i.e., solvable instances
of Tab. 1 were only solved by ERA).

In ERA, each agent has its own local goal—to move to a
minimal violation-value position. During search, each agent
focuses on achieving its local goal. The global goal of mini-
mizing conflicts of a state is implicitly controlled by the envi-
ronmentE, through which the agents ‘communicate.’ This
communication medium is effective when the problem is
solvable, because agents are always able to find a ‘better po-
sition’ to move to. It also increases the ‘freedom’ of an agent
to explore its search space, which allows search to avoid local
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optima. This decentralized control is contrasted with the cen-
tralized control used in local search where the neighboring
states are evaluated globally by a centralized function.

4.4 Soft vs. hard assignment
We identify two main strategies to handle deadlocks:

Definition 2. Hard assignment:none of the variables is as-
signed the value.

Definition 3. Soft assignment:using some conflict resolu-
tion strategy, some of the variables are assigned the value in
a manner that respects its capacity constraint.

The former strategy is implemented in ERA and results in
fewer variables being instantiated. The latter is adopted in BT
and LS and results in more variables being instantiated. We
believe that the former strategy is more appropriate in practi-
cal settings because itclearly delimits the sources of conflict
and makes them the responsibility of a subsequent conflict
resolution process. Indeed, conflict identification is a difficult
task (perhaps NP-hard) and ERA may well be an effective
strategy to approach it.

4.5 Stable vs. unstable evolution
As highlighted in Fig. 6 and 7, the evolution of ERA across
iterations, although not necessarily monotonic, is stableon
solvable problems and gradually moves towards a full solu-
tion. On unsolvable problems, its evolutions is unpredictable
and appears to oscillate significantly. This contradicts the
conclusion of Liu et al.[Liu et al., 2002], which claims that
ERA always evolves toward better states. This clearly does
not hold true for over-constrained problems.

4.6 Solvable vs. unsolvable problems
Among the three strategies we tested (we are testing others),
only ERA was able to solve our hard, solvable instances. This
ability can be traced to its decentralized control, which al-
lows it to move out of local optima. However, this feature
is also the cause of the deadlock phenomenon encountered
in over-constrained cases. Indeed, ERA’s performance is un-
stable and leaves many solvable tasks unsolved. This yields
solutions less competitive than those obtained by BT and LS.
We therefore need to develop a more sophisticated inter-agent
communication mechanism to overcome this obstacle, which
is overlooked in the original ERA algorithm[Liu et al., 2002].

5 Future research directions
Our experiments were carried out on the 100-queen problem
and real-world instances of the GTA problem. While our ob-
servations seem generalizable beyond these two problems, we
still need to characterize the behavior of multi-agent search
on random and other real-world CSPs.

We showed that ERA is particularly effective at handling
tight, solvable problems that resisted other search techniques.
However its shortcomings on over-constrained problems (i.e.,
its instability and the degradation of the approximate solu-
tions it finds) significantly undermine its usefulness in prac-
tice. We plan to address this problem from the following per-
spectives:

1. Development of conflict resolution strategies to over-
come deadlocks. Note that the ability of ERA to isolate
the deadlock is a significant advantage in this task.

2. Experiment with search hybridization techniques with
LS, which can reach and maintain a good quality ap-
proximate solution within the first few iterations.

3. Further, we plan to expand our study to include tech-
niques such as randomized systematic search[Gomes
et al., 1998], the squeaky wheel method[Joslin and
Clements, 1999], and market-based techniques[Sand-
holm, 2002], in a setting similar to the ‘algorithm port-
folios’ of [Gomes and Selman, 2001].

4. Finally, we plan on conducting a more thorough empir-
ical evaluation of the behavior of the various algorithms
on randomly generated problems following the method-
ology of [Hoos, 1998; Hoos and Stützle, 1999].
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[Hoos and Stützle, 1999] H.H. Hoos and T. Stützle. Towards a
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