
Cut-and-Traverse: A New Structural

Decomposition Strategy for Finite Constraint

Satisfaction Problems ?

Yaling Zheng and Berthe Y. Choueiry

Constraint Systems Laboratory
University of Nebraska-Lincoln

Email: yzheng|choueiry@cse.unl.edu

Abstract. In this paper, we propose a new heuristic structural decom-
position strategy for Constraint Satisfaction Problems (CSPs), called
Cut-and-Traverse (CAT) decomposition. This method has three steps:
cutting step, traversing step and combining step. In the first step, cut-
ting step, we gradually decompose the structure of a CSP instance to
multiple partitions by finding independent cuts in a given CSP. Every
cut is a set of hyperedges in a CSP instance. We can control the size of cut
by only finding independent cuts that are no greater than a given bound
number h. In the second step, traversing step, we traverse each partition
and get an equivalent acyclic constraint network for each partition. In the
third step, combining step, we combine the acyclic constraint networks
in all partitions and get an equivalent acyclic constraint network for the
given CSP. Using this method, the complexity is O(|E|h) where |E| is
the number of constraints in given CSP instance. Our experiment shows
that CAT decomposition spends far much less time than hypertree de-
composition while sometimes produces same hyperwidth decomposition
as hypertree decomposition. Also it is shown that CAT decomposition
always produces better decomposition result than hinge decomposition.

1 Introduction

A large number of important practical problems, such as scheduling and design-
ing problems, can be formulated as Constraint Satisfaction Problems (CSP).
CSPs are NP-complete and mainly solved by search. While many strategies are
being investigated to improve the performance of the search process itself, other
research efforts are invested in identifying tractable classes of CSPs. One ap-
proach of the latter category, inspired from results on acyclic query processing
in relational databases, is based on exploiting structural properties of the con-
straint network. For example, when the hyperwidth of this network is bounded,
the CSP is guaranteed to be tractable [1]. New decomposition techniques that

? This work is supported by CAREER Award #0133568 from the National Science
Foundation

decompose a cyclic CSP into an acyclic one have recently received increased at-
tention. In this paper we explore a new heuristic decomposition technique that
falls under this category.

It is known that acyclic CSPs can be solved in polynomial time [2]. A CSP is
acyclic iff the primal graph is chordal (for any cycles longer than 3 arcs there is
an edge joining two non-consecutive vertices along the cycle) and each maximal
clique of the primal graph corresponds to an edge in the hypergraph.

A lot of structural decompositions have been proposed recently to compute
an equivalent acyclic CSP for a given CSP instance. These structural decompo-
sition methods include biconnected decomposition [3] (BICOMP), hinge decom-
position [4, 5] (HINGE),tree clustering [6] (TCLUSTER), hinge decomposition
combined with tree clustering [4] (HINGETCLUSTER), cycle cutset [7] (CUT-
SET), hypertree decomposition [8, 9] (HYPERTREE), comparison of most of
these methods is done in [10].

Among these decomposition algorithms, hinge decomposition computes an
equivalent acyclic constraint network for a given hypergraph H. The edges of
the equivalent acyclic constraint network have labeled arcs. We are inspired by
these labeled arcs, which are regarded as cuts in our decomposition. However,
hinge decomposition is not optimal. A decomposition method is called optimal
iff the hyperwidth hyperwidth of equivalent acyclic constraint network for any
constraint hypergraph it computes is always equal to the hypertree width by
hypertree decomposition. The hyperwidth of the equivalent acyclic network for
a constraint network using hinge decomposition is usually much bigger than
hypertree width of the constraint network. For the recently proposed hypertree
decomposition [8, 9], although it is optimal and the hypertree decomposition
scheme with redundancy reduced [9] reduces the best-case time complexity of
opt-k-decomp to O(|C|k|V|+ |C|2|V|), our experiment shows that it is not efficient
in practise, especially for a CSP instance with big hypertree width. Failing to
utilise information from a ‘failed’ run of opt-k-decomp is another disadvantage
of hypertree decomposition.

In this paper, we propose a new structural decomposition algorithm which is
inspired by both hinge decomposition and hypertree decomposition, called Cut-
and-Traverse (CAT) decomposition. CAT decomposition takes a bound number
h limiting the size of cuts and a hypergraph, goes for 3 steps. The first step,
cutting step, which finds a set of cuts in a hypertree, can not only find cuts with
size 1, as hinge decomposition actually does, but also find cuts greater than
size 1. The second step, traversing step, which produces an equivalent acyclic
network with a lot of tree nodes for each partition, may produces tree nodes that
are greater than the bound number h. The third step, combining step, combines
all the acyclic networks for partitions, forms an equivalent acyclic network for
the whole hypergraph.

The paper is organized as follows. In Section 2 we review the necessary termi-
nology for CSPs, hypergraphs, hinge decomposition, hypertree decomposition.
Then in Section 3, Cut-and-Traverse (CAT) algorithm is shown, an example
is illustrated, the complexity of CAT decomposition is evaluated. After that,

experimental data is shown to compare hinge decomposition, hypertree decom-
position and CAT decomposition in Section 4. Finally, in Section 5 we conclude
this paper and propose future work.

2 Background

In this section, we present a set of definitions explaining basic definition of CSP,
constraint hypergraph, hinge decomposition, hypertree decomposition, hyper-
width, treewidth.

Definition 1. Constraint Satisfaction Problem [2]: A Constraint Satisfaction
problem (CSP) is defined as a tuple P = (V ,D, C) where V is a set of variables,
C is a set of constraints and D is a set of value domains for the variables. Every
constraint Ci ∈ C is a relation over a set S of variables (which determines the
scope of constraint Scope(C)=S) and defines the set of allowed tuples. A solution
to the CSP problem is an assignment of values to the variables satisfying all the
constraints.

The structure of a CSP constraints can be represented by a constraint hyper-
graph. A constraint hypergraph is defined as:

Definition 2. Constraint hypergraph [2]: The structure of a CSP constraints
can be represented by a constraint hypergraph. A hypergraph H of a CSP prob-
lem can be represented as H = (V, S) that consists of a set of vertices V =
{v1, v2, . . . , vn} and a set of subsets of these vertices S = {S1, S2, . . . , Sl}, Si ⊆
V . Si is a constraint scope in a CSP, it is a hyperedge in a hypergraph.

A hypergraph of crossword puzzle problem is shown in Figure 1.

Definition 3. Hinge decomposition [4]: Let (V, E) be any hypergraph. A hinge-
tree of (V, E) is a tree, (N, A), with nodes N and labeled arcs A, such that:

1. The tree nodes are minimal hinges of (V, E).
2. Each edge in E is contained in at least one tree node.
3. Two adjacent tree nodes share precisely one edge of E which is also the label

of their connecting tree-arc; moreover, their shared vertices are precisely the
members of this edge.

4. The vertices of V shared by two tree nodes are entirely contained within each
tree node on their connecting path.

Definition 4. Hypertree decomposition [11]: A hypertree decomposition of a
hypergraph H is a hypertree HD = (T, χ, λ) for H which satisfies all the following
conditions:

1. for each edge h ∈ edges(H), there exists p ∈ vertices(T) such that var(h) ⊆
χ(p) (we say p covers h).

2. for each variable Y ∈ var(H), the set {p ∈ vertices(T) | Y ∈ χ(p)} induces
a (connected) subtree of T ;

3. for each p ∈ vertices(T), χ(p) ⊆ var(λ(p));
4. for each p ∈ vertices(T), var(λ(p)) ∩ χ(Tp) ⊆ χ(p).

The inclusion in condition (4) is actually equality, because condition (3) implies
the reverse inclusion.

Definition 5. Hypertree width [11]: the hypertree width for a given hypergraph
H hw(H) is the minimum width over all its possible hypertree decompositions.

Definition 6. Treewidth [2] The tree width of a tree decomposition (T, χ, λ) is
tw = maxv∈V | χ(V) |.

3 A new heuristic structural decomposition

First, in section 3.1, we give the definition of CAT decomposition and the hy-
perwidth of a CAT decomposition. Then, in section 3.2, we present the CAT
decomposition algorithm, which, given a hypergraph and a given bound num-
ber, returns an equivalent acyclic constraint network. After that, the complexity
of CAT decomposition is evaluated in section 3.3, the process after CAT de-
composition for a given CSP instance to find a solution is shown in section 3.4.
Finally, a crossword example is shown in section 3.5.

3.1 Definitions

Definition 7. Cut-and-Traverse (CAT) decomposition: A CAT decomposition
of a hypergraph H is a hypertree HD = (T, λ) for H which satisfies all the
following conditions:

1. for each edge h ∈ edges(H), there exists p ∈ vertices(T) such that var(h) ⊆
λ(p) (we say p covers h).

2. for each variable Y ∈ var(H), the set {p ∈ vertices(T) | Y ∈ var(λ(p))}
induces a (connected) subtree of T ;

Definition 8. Hyperwidth of a CAT decomposition: The hyperwidth of a Cut-
and-Traverse decomposition T = (N, A) for a hypergraph (H) = (V, E) is defined
as maxp∈N (min{|p′| | var(p′) = var(p) ∧ (p′ ⊆ p)}).

Definition 9. var(S): for S, which can be an edge or a set of edges, var(S) is
the vertices included in this edge or a set of edges.

Definition 10. neighbors(S, H): for a set of hyperedges S and a hypergraph
H = (V, E), neighbors(S, H) is the set of hyperedges in H that joins at least one
hyperedge in S. That is, neighbors(S, H) = {e | (e ∈ E) ∧ (e∩ var(S) 6= ∅)}.

Definition 11. remain-hg(C,H): for a set of hyperedges C in a hypergraph H =
(V, E), remain-hg(C, H) is a new hypergraph R = (Vr, Er), which can be defined
as:

Vr = V − var(S)

Er =
⋃

e∈E

{e − var(S)}

For example, for C = {(1 2 3 4 5)(20 21 22 23 24 25 26)} from the given
hypergraph Hcg in Figure 1, remain-hg(C, Hcg) is shown in Figure 2.

7

20 21 22 23 24 25 26

1 2 3 4 5 6

16 17 18 19

11 12 13 14 15

 8 9 10

Fig. 1. Hypergraph Hcp of the
crossword puzzle.

7

16 17 18 19

11 12 13 14 15

 8 9 10

6

Fig. 2. The remaining graph of the
hypergraph shown in Figure 1 after
removal of a set of hyperedges C =
{(1 2 3 4 5)(20 21 22 23 24 25 26)}.

Definition 12. Cut of a hypergraph: a set of hyperedges C in a hypergraph H
is called a cut if remain-hg(C, H) has at least 2 maximal components. a set of
hyperedges is called a component if these edges are connected. A component is
said to be maximal if no othe hyperedges can be added into this component to be
formed a larger component.

Definition 13. f(C, H): for a cut C of a hypergraph H, we evaluate the cut by
a heursitic function f . f(C,H) is the largest number of hyperedges among all
maximal components in remain-hg(C, H).

3.2 Cut-and-Traverse (CAT) decomposition

In this section we explain describe a new decomposition method, called CAT
decomposition, which, given a hypergraph H, computes a CAT decomposition
for a hypergraph H. This algorithm is presented in Algorithm 1. It has third
steps. The first step finds a set of cuts that is no greater than a given bound
number, and returns a set of partitions, each containing one or 2 cuts, as shown in
Algorithm 2, the related sub routines of Algorithm 2 are shown in Algorithm 3
and Algorithm 4. The second step traverses every partition found in the first
step, as shown in Algorithm 5, returns a tree for each partition. The third step
combines the trees found in the second step, as shown in Algorithm 6.

First we explain the following terms in CAT decomposition algorithm.

Definition 14. Cuts to be independent: Two cuts are said to be independent
with each other iff they don’t include same hyperedges.

Definition 15. Size of a set of hyperedges: the size of a set of hyperedges S is
the smallest number of hyperedges within S that covers var(S), formally, it is
min{|S′| | S′ ∈ S, var(S′) = var(S)}.

Definition 16. Partition: a partition P in a hypergraph (H) includes the fol-
lowing attributes:

1. content, which is a set of hyperedges representing a hypergraph;
2. cut1, which is a cut of H or is nil and satisfies P .cut1 ⊆ P .content;
3. cut2, which is another cut for H or is nil and satisfies P .cut2 ⊆ P .content;
4. min-new-cut-size, which is the minimum size of a new cut independent with

P .cut1 and P .cut2.

Once a paritition can not be further divided into more smaller partitions by cuts
within a given number h, it will be traversed from P .cut1 to P .cut2 or P .cut2
to P .cut1 if P .cut1 6= ∅ and P .cut2 6= ∅, or will be traversed from P .cut1 until
all hyperedges are visited if P .cut2.

Definition 17. candidate cuts: A candidate cut C for a partition P is the set
of cuts that satisfying the following conditions:

1. the size of cut C = P .min-new-cut-size;
2. C doesn’t include any edge in cut1 and cut2 of P . That is, C ∩ (P.cut1 ∪

P.cut2) = ∅;
3. remain-hg(C, P) has at least 2 maximal components and P .cut1, P .cut2 are

in 2 different maximal components;

Candidate cuts are all cuts satisfying the above conditions.

In CAT decomposition, a number is given to restrict the size of cuts in the
cutting step. This number doesn’t restrict the hyperwidth of a CAT decomposi-
tion. Thus, using CAT decomposition, the hyperwidth of the CAT decomposition
for a hypergraph H is not bound by given number h. While the hypertree decom-
position [11] computes an optimal hypertree of H with hyperwidth within given
bound number k; the algorithm returns failure if no such decomposition exists.
In our algorithm, the constant h is only restricted to the size of cuts. Therefore,
CAT decomposition is much more flexible than hypertree decomposition at the
expense of losing its optimality. Also, while hinge decomposition only finds cuts
with size 1 as labelled edge, CAT decomposition finds cuts with given bound
number h. When h = 1, CAT decomposition is in fact same as hinge decom-
position except that in CAT decomposition, labeled edges are regarded as cuts.
When h > 1, the CAT decomposition is better or as good as hinge decompositon
as far as hyperwidth and treewidth are concerned.

3.3 Complexity of CAT decomposition

The complexity of CAT decomposition is only related to the given bound h.
Since the number of possible combination of h hyperedges in a hypergraph H =

Input: A hypergraph H = (V, E) and a bound number h ≤ b |E|
2
c

Output: A CAT decomposition of H

initial-partition.content ← H;
initial-partition.cut1 ← ∅;
initial-partition.cut2 ← ∅;
initial-partition.min-new-cut-size ← 1;
partitions ← FindCuts(initial-partition, h);
if partitions = “failure” then

/* separate E into two groups and return the result */

N1 ← a set of hyperedges in E s.t. |N1| = b
|E|
2
c;

N2 ← E −N1;
N ← {N1, N2};
A← (N1, N2);
T ← (N, A);

end
else

Strees = ∅;
foreach partition P in partitions do

add Traverse(P) to Strees;

end
T ← Combine(Strees);

end
return T ;

Algorithm 1: CAT(H, h).

Input: a partition P and a bound number h ≤ bn

2
c

Output: a set of partitions

partitions ← ∅;
newpartitions ← FindANewCut(P , h);
if newpartitions 6= “Failure” then

foreach P ′ ∈ newpartitions do
FindCuts(P ′, h)

end
else

push P into parititions

end
end
return partitions;

Algorithm 2: FindCuts(P , h).

Input: C and P , C is a found cut for partition P

Output: a set of new partitions

new-partitions ← ∅
foreach maximal component G of P do

/* F is a mapping function that maps original hyperedge */
/* to a remain hyperedge in remain-hg(C, P .content). */
P ′.content ← {x | F (x) ∈ G} ∪ C

if (P ′.content ∩ (P .cut1 ∪ P.cut2)) 6= ∅ then
p′.cut1:= P .cut1 ∪ P.cut2;
p′.cut2:= C;

end
else

p′.cut1:= C;

end
add P ′ to new-partitions;

end
return new-partitions;

Algorithm 3: BuildNewPartitions(C, P).

Input: a partition P and a bound number h ≤ bn

2
c

Output: return a set of partitions if a new cut is found or nil if no new cut is found

candidate-cuts ← ∅;
while (candidatecuts 6= ∅) and (P .min-new-cut-size ≤ h) do

/* possible cuts in a partition P is all the combinations of */
/* k = P .min-new-cut-size hyperedges */
/* except the hyperedges in P .cut1 and P .cut2 */
possible-cuts ← possible cuts of P ;
/* refer definition of candidate cuts in Definition 17 */
candidate-cuts ← candidate cuts of P in possible-cuts;
if candidate-cuts = ∅ then

P .min-new-cut-size ← P .min-new-cut-size + 1;

end
end
if k > h then

return “failure”
end
else

/* refer definition of f in Definition 13 */
chosencut ← a candiate cut with minimum f(C, P) among candidate-cuts;
return BuildNewPartitions(C, P);

end

Algorithm 4: FindANewCut(P , h).

Input: a partition P = (V, E)

Output: a traverse tree T = (N, A) for P

C1 = P.cut1;
C2 = P.cut2;
foreach e ∈ E − C2 do

mark e as unvisited;

end
add C1 into N ;
mark e ∈ C1 as visited;
unvisited-edges ← E − C2;
justvisited-edges ← C1;
visiting-edges ← ∅;
while (justvisited-edges 6= C2) ∧ (unvisited-edges 6= ∅) do

visiting-edges ← neighbors(justvisited-edges) ∩ unvisited-edges;
/* add those edges included in visiting-edges */
visiting-edges ← {e | e ⊆var(visiting-edges) ∩ e ∈ unvisited-edges};
if visiting-edges 6= ∅ then

add visiting-edges to N ;
add an arc (visiting − edges, justvisited− edges) to A;
mark e ∈ visiting − edges as visited;
remove visiting-edges from unvisited-edges;
justvisited− edges← visiting − edges;

end
end
T ← (N, A);
return T ;

Algorithm 5: Traverse(P).

Input: A set of trees Strees

Output: A tree T = (N, A) that is the combination of the input trees

N ← ∅;
A← ∅;
foreach Si = (Ni, Ai) ∈ Strees do

add Ni −N into N ;
add Ai into A;

end
T ← (N, A);
return T ;

Algorithm 6: Combine(Strees).

(V, E) is no greater than O(|E|h) where |E| is the number of constraints in
the hypergraph and only cuts with size no greater than h is considered, so the
complexity of our algorithm in the worst case is bound by O(|E|h). Thus, the
complexity of CAT decomposition is polynomial. Although the complexity of
hypertree decomposition with redundancy reduced is bound by |E|k|V |+ |E|2|V |
where |E| is the number of hyperedges and |V | is the number of vertices in H,
experiment in Section 4 shows that CAT decomposition takes far less time than
hypertree decomposition.

3.4 Solving a CSP by Cut-and-Traverse decomposition

The procedure to solve the CSP after finding an equivalent acyclic constraint
network using CAT decomposition is shown in Algorithm 7. The complexity of
the Algorithm 7, is O(|V ||E|2) + O(|E|ld log l), where l is the maximal size of a
constraint in C, and d is the hyperwidth of the hypergraph (V, E).

Input: A constraint satisfaction problem P = (V,D, C)

Output: A solution to P

Using Algorithm 1, compute a CAT decomposition T for hypergraph (V,S) where
S is the constraint scope of C;
Using T , compute the equivalent constraint satisfaction problem, P ′ by solving
the subproblems corresponding to the nodes of T ;
Find a solution to the tree-structured problem P ′ in a backtrack-free manner, as
described in [3].

Algorithm 7: Solving a CSP by Cut-and-Traverse decomposition

3.5 An example

In this section, we illustrate CAT decomposition for a given hypergraph of a
crossword puzzle problem as shown in Figure 1 [10]. We bound the cutting size
as h = 2, the three steps to find an equivalent acyclic constraint network are as
follows:

1. Cutting step.
For the hypergraph, it has 7 candiate cuts with size 2, they are

{(1 2 3 4 5)(20 21 22 23 24 25 26)} (f = 3)
{(11 12 13)(20 21 22 23 24 25 26)} (f = 5)
{(8 9 10)(20 21 22 23 24 25 26)} (f = 5)
{(1 7 11 16 20)(13 17 22)} (f = 5)
{(1 7 11 16 20)(20 21 22 23 24 25 26)} (f = 4)
{(5 8 14 18 24)(6 10 15 19 26)} (f = 5)
{(5 8 14 18 24)(20 21 22 23 24 25 26)} (f = 4)

f is the value of a cut in a hypergraph is the largest component size of
the remaining graph after removing the cut in a hypergraph, as defined in
Definition 13.

we choose the cut { 1 2 3 4 5)(20 21 22 23 24 25 26)} whose f value is
smallest. The partitions separted by the cut is as follows:

7

20 21 22 23 24 25 26

1 2 3 4 5

16 17

 11 12 13

Fig. 3. Partition 1.

20 21 22 23 24 25 26

1 2 3 4 5 6

 8 9 10

14 15

18 19

Fig. 4. partition 2

For partition P1, there are no candiate cuts.

For partition P2, there are no candiate cuts.

Cutting step finishes.

2. Traversing step
Traverse P1, we get a tree as shown in Figure 5. Traverse P2, we get a tree
as shown in Figure 6.

7

20 21 22 23 24 25 26

1 2 3 4 5

16 17

 11 12 13

Fig. 5. Traverse partition 1

20 21 22 23 24 25 26

1 2 3 4 5 6

 8 9 10

14 15

18 19

Fig. 6. Traverse partition 2

3. Combining step.
Combine the tree in Figure 5 and Figure 6, we get the result as shown in
Figure 7

(5 8 14 18 24)
(6 10 15 19 24) (13 17 22)

 (1 7 11 16 20)

 (11 12 13) (8 9 10)

(20 21 22 23 24 25 26)
 (1 2 3 4 5)

Fig. 7. CAT decomposition

4 Experimental data

In the experiment, we randomly generate 100 hypergraphs with 20 variables
and 10 constraints. We compare three decomposition methods: hinge decompo-
sition (HINGE), hypertree decomposition with redundancy reduce (HTD), and
Cut-and-Traverse decomposition (CAT). We compare three items: CPU time,
treewidth and hyperwidth. Here, we regard the treewidth of hinge decomposi-
tion as the largest number of variables covered in a vertex of hinge tree. the
treewidth of CAT decomposition as the largest number of variables covered in
a vertex of a CAT decomposition. Formally, the treewidth of a CAT or hinge
decomposition T = (N, A) for a hypergraph H is min{|var(p)| | p ∈ N}. We
regard the hyperwidth of hinge decomposition and CAT decomposition as the
largest size of tree nodes. The size of a set of hyperedges S is the smallest number
of hyperedges within S that covers var(S). Formally, the hyperwidth of a CAT
or hinge decomposition T = (N, A) for a hypergraph H is maxp∈N (min{|p′| |
(var(p′) = var(p)) ∧ (p′ ⊆ p)}).

From above experimental data, we know that, CAT decomposition produces
better decomposition result than hinge decomposition. In some cases, CAT de-
composition produces same hyperwidth result as HTD decomposition, as shown
in Figure 10. Also, CAT decomposition spends much less time than HTD de-
composition. In these 100 instances, CAT decomposition spend no more than
10 millseconds while HTD decomposition spends much more time, as shown in
Figure 8. In fact, under all cases, the treewidth of CAT decomposition never
exceeds the treewidth of HINGE decomposition, as shown in Figure 9.

5 Conclusion and future work

In this paper, we propose a new decomposition algorithm, which was inspired
by both hinge-tree decomposition and hypertree decomposition. This decompo-
sition algorithm has three basic steps. In the first step, cutting step, a set of
independent cuts are found and a set of partitions cut by these cuts are com-
puted. Then in the second step, traversing step, each partition that was found
in the first step is traversed and an equivalent tree is computed. Finally, in the

0 20 40 60 80 100
100 instances

0

5000

10000

15000

20000

25000

30000

C
PU

 ti
m

e
(m

ill
se

co
nd

s)

HINGE
HTD
CAT

CPU comparison

Fig. 8. CPU comparison of HINGE, HTD and CAT.

0 20 40 60 80 100
100 instances

6

8

10

12

14

16

18

20

tr
ee

w
id

th

HINGE
HTD
CAT

Treewidth compare

Fig. 9. Treewidth Comparison of HINGE, HTD and CAT.

0 20 40 60 80 100
100 instances

1

2

3

4

5

6

7

hy
pe

rw
id

th

HINGE
HTD
CAT

Hyperwidth comparison

Fig. 10. Hyperwidth Comparison of HINGE, HTD and CAT.

third step, combining step, the trees computed in the second step is combined
and a CAT tree is achieved. In conclusion, CAT is a heuristic structural decom-
position. It choose a best cut among multiple candiate cuts which are evaluated
by a heuristic function.

We implement CAT decomposition and compare CAT decomposition with
hinge decomposition and hypertree decomposition on random hypergraphs, which
shows that CAT decomposition spends much less time than HTD decomposition
while sometime produces same hyperwidth decomposition result as HTD. Also,
CAT decomposition produces much better result than HINGE decomposition
for almost all cases.

Our future work is to do more experiments on random CSPs to compare the
efficiency of solving CSPs using different decomposition methods.

References

1. Gottlob, G., Leone, N., Scarcello, F.: Hypertree Decompositions: A Survey. In:
26th International Symposium on Mathematical Foundations of Computer Science
(MCFS 2001), Marianske Lazne, Czech Republic (2001) 37–57

2. Dechter, R.: Constraint Processing. Morgan Kaufmann (2003)

3. Freuder, E.C.: A Sufficient Condition for Backtrack-Bounded Search. JACM
32 (4) (1985) 755–761

4. Gyssens, M., Jeavons, P.G., Cohen, D.A.: Decomposing Constraint Satisfaction
Problems Using Database Techniques. Artificial Intelligence 66 (1994) 57–89

5. Jeavons, P.G., Cohen, D.A., Gyssens, M.: A Structural Decomposition for Hyper-
graphs. Contemporary Mathematics 178 (1994) 161–177

6. Dechter, R., Pearl, J.: Tree Clustering for Constraint Networks. Artificial Intelli-
gence 38 (1989) 353–366

7. Dechter, R., Pearl, J.: The Cycle-Cutset Method for improving Search Performance
in AI Applications. In: Third IEEE Conference on AI Applications, Orlando, FL
(1987) 224–230

8. Gottlob, G., Leone, N., Scarcello, F.: Hypertree Decompositions and Tractable
Queries. Journal of Computer and System Sciences 64 (2002) 579–627

9. Harvey, P., Ghose, A.: Reducing Redundancy in the Hypertree Decomposition
Scheme. In: The 15th IEEE International Conference on Tools with Artificial
Intelligence (ICTAI 03). (2003) 474–481

10. Gottlob, G., Leone, N., Scarcello, F.: A Comparison of Structural CSP Decompo-
sition Methods. Artificial Intelligence 124 (2000) 243–282

11. Gottlob, G., Leone, N., Scarcello, F.: On Tractable Queries and Constraints. In:
10th International Conference and Workshop on Database and Expert System Ap-
plications (DEXA 1999). (1999) 1–15

