A New Efficient Algorithm for Solving the Simple Temporal Problem

Lin XU and Berthe Y. CHOUEIRY
Constraint Systems Laboratory
Department of Computer Science and Engineering
University of Nebraska-Lincoln
{I'xu| chouei ry}@se. unl . edu

1 Abstract

In this paper we propose a new efficient algo-
rithm, the ASTP-solver, for computing the minimal
network of the Simple Temporal Problem (STP).
This algorithm achieves high performance by ex-
ploiting a topological property of the constraint
graph (i.e., triangulation) and a semantic property of
the constraints (i.e., convexity) in light of the results
reported by Bliek and Sam-Haroud [1], which were
presented for general CSPs and have not yet been
applied to temporal networks. Importantly, we de-
sign the constraint propagation in ASTP-solver to
operate on triangles instead of operating on edges
and implicitly guarantee the decomposition of the
constraint graph according to its articulation points.
We also provide extensive empirical evaluations of
all known algorithms for solving the STP on sets
of randomly generated problems. Our experiments
demonstrate significant improvements of ASTP-
solver, in terms of number of constraint checks
and CPU time, over previously reported algorithms
such as the Floyd-Warshall algorithm (F- W [5;
8], Directed-Path Consistency (DPC) [8], and Par-
tial Path-Consistency (PPC) [1].

2 Introduction

Many critical applications in planning and
scheduling rely on an efficient handling of tempo-
ral information represented as a Simple Temporal
Problem (STP) [6; 8; 3]. The efficiency of the con-
straint propagation in such a network is particularly
crucial in autonomous space applications as demon-
strated by the Deep Space 1 Remote Agent experi-

ment [12]. Further, an efficient STP solver is a cru-
cial component for solving the Temporal Constraint
Satisfaction Problem (TCSP) because the search
process designed by Dechter et al. [8] for solving
the TCSP requires solving an STP at each node ex-
pansion. Thus, the performance of the overall pro-
cess depends heavily on the performance of solving
an STP. In this paper, we propose a new algorithm,
ASTP-solver, for solving the STP and demonstrate
empirically that it constitutes a dramatic improve-
ment over previously used algorithms.

We achieve this by first combining the results
developed by Bliek and Sam-Haroud [1] for gen-
eral Constraint Satisfaction Problems (CSPs) with a
new strategy for constraint propagation, which re-
stricts the propagation effort to the triangles of the
triangulated constraint network instead of its edges.
Then, we apply the resulting mechanism to solve
the STP. The triangulation of the graph and the con-
vexity of the constraints in the STP guarantee that
ASTP-solver is complete and sound for proving the
consistency of the STP and for finding the minimal
(and decomposable) network. This paper is struc-
tured as follows. Section 3 recalls the main prop-
erties of a CSP and shows how we use them in
our study. Section 4 discusses the algorithms for
solving the STP and explains the advantages of the
ASTP-solver. Section 5 describes our experiments
and results, and summarizes our observations. Sec-
tion 6 concludes this paper.

3 Background

A Constraint Satisfaction Problem (CSP) is de-
fined as follows. Given a set of variables, each

with a set of possible values defining its domain,
and a set of constraints that restrict the combina-
tions of values that the variables can be assigned at
the same time, the task is to assign a value to each
variable such that all constraints are simultaneously
satisfied. Path consistency, as we discuss below, is
an important property of a CSP. Recently Bliek and
Sam-Haroud [1] proposed the Partial Path Consis-
tency (PPC) algorithm, which determines whether
or not a network is path consistent. Since PPC op-
erates on the triangulated constraint graph , it re-
alizes significant computational savings over previ-
ously known algorithms, especially for sparse net-
works. In this paper, we first improve the propaga-
tion mechanism of the PPC algorithm by making it
operate on triangles instead of individual edges. We
then use the improved version to solve the STP. In
the next section, we recall the main properties of a
CSP and discuss them in light of the STP.

3.1 Main CSP properties

The general properties of constraint graphs and
the main algorithms for achieving them are outlined
below.

o Path consistency: This property ensures that given
two values for any two variables that satisfy the
constraint between these variables, we can find val-
ues for variables in any path of any length (possi-
bly infinite) that satisfy the constraints along the
path [11]. In general CSPs, path-consistency al-
gorithms PC (e.g., PG- 1 [11] and PC- 2 [10]) are
used to enforce path consistency by tightening the
binary constraints. (They also tighten the domains,
thus enforcing strong path-consistency.) Monta-
nari established that these algorithms, which con-
sider only paths of length two, on a complete graph?
guarantee a path-consistent network [11]. The Di-
rectional Path-Consistency (DPC) algorithm, which
achieves path consistency along a given ordering
d of the variables in the search process, was pro-
posed by Dechter [7] as an efficient approximation
of PC, it guarantees path consistency only in the di-
rection that matters, which is that of search. Re-
cently Bliek and Sam-Haroud [1] proposed the Par-
tial Path Consistency (PPC) algorithm, which de-

1A graph is triangulated if every cycle of length strictly
greater than 3 possesses a chord.

2|f the graph is not complete, it is made so by adding univer-
sd constraints between non-adjacent edges.

termines whether or not a network is path consis-
tent without necessarily producing a tight network
as with PC. Since PPC operates on the edges of the
triangulated graph (fewer than those of the complete
graph), it realizes significant computational savings,
especially in sparse networks.

e Minimality: Minimality, the central problem in
CSPs, is a property stronger than path consistency.
It guarantees that all the binary constraints are as
explicit (i.e., tight) as possible [11].

e Decomposability: Decomposability is stronger
than minimality and guarantees that a solution to the
CSP can be found backtrack-free. This is a highly
desirable property and guarantees the tractability of
the CSP.

e Consistency: In contrast to the above, the con-
sistency property guarantees only the existence of a
solution. Note that decomposability is a sufficient
condition for consistency.

e Decomposition into biconnected components:
The decomposition of the constraint graph into its
biconnected components according to its articula-
tion points® is a known technique for enhancing the
performance of solving a CSP in general. It pro-
vides an upper bound, in the size of the largest bi-
connected component, to the search effort [9]. We
establish that the new solver we introduce, ASTP,
implicitly decomposes the constraint graph into its
biconnected components without using articulation
point. This important observation justifies its high
performance.

3.2 Properties of the STP

A Simple Temporal Problem (STP) is defined by
agraph G = (V, E, I) where V is a set of vertices ¢
representing time points; E is a set of edges e; ; rep-
resenting constraints between two time points 4 and
4; and I is a set of constraint labels for the edges;
see Figure 1 (left). A constraint label I; ; of edge
e;,; is a unique interval [a,b], a,b € R, and de-
notes a constraint of bounded difference a < (j — 1)
< b. A Temporal Constraint Satisfaction Problem
(TCSP) is defined by a similar graph G = (V, E, I),
where each edge label I; ;= {1{}), 1), ..., I{¥} is
a set of disjoint intervals denoting a disjunction of

SAn articulation point of a graph is a vertex whose removal
disconnects the graph. A graph with an articulation point is sep-
arable, otherwise it is biconnected.

constraints of bounded differences between ¢ and 7,
see Figure 1 (right). We assume that the intervals in

l15,={[3.5],[6.9],..}

Figure 1. Left: STP. Right: TCSP.

a label are ordered in a canonical way. In this paper
we focus on STPs, but we are integrating our results
into an algorithm for solving TCSPs. Below, we
show how we exploit the properties of Section 3.1
in the context of the STP.

e Triangulation of network and convexity con-
straints. In addition to proposing PPC, Bliek and
Sam-Haroud also showed that when the constraints
are convex, the PCalgorithm (operating on the com-
plete graph) and the PPC algorithm (operating on
the triangulated graph) yield the same labeling for
the edges common to both graphs. This impor-
tant feature of the PPC algorithm has never been
exploited before in the context of STPs, in which
the constraints— linear inequalities—are indeed con-
vex. Our ASTP-solver exploits this result and
yields significant savings of the computational ef-
forts over previously available techniques for estab-
lishing path consistency of the STP.

e Distribution of composition over intersection.
The two operators on binary constraints for es-
tablishing path consistency are constraint compo-
sition ® and constraint intersection @. Montanari
showed that when constraint composition is dis-
tributive over constraint intersection, PC guarantees
not only path consistency but also minimality and
decomposabilility [11]. In the case of the STP, con-
straint composition is interval addition, and con-
straint intersection is interval intersection, which
verify the distributivity as noted by Dechter et al.
[8]. Therefore we can deduce that the PPC algo-
rithm and the ASTP-solver, guarantee the minimal-
ity and decomposability of the STP. DPC does not
guarantee the path-consistency, minimality or de-
composability of the constraint network, however,
and this is an important feature, it can be used to
determine the consistency of the STP.

e Decomposition into biconnected components. In
the special case of the TCSP, and a fortiori the STP,
Dechter et al. [8] showed that each biconnected

component can be solved independently. If all the
components are found to be consistent, then the en-
tire network is consistent. If any of the components
is not consistent, then the overall temporal network
is not consistent. The minimal network of the orig-
inal problem is obtained by the union of the min-
imal networks of the individual biconnected com-
ponents. When the constraint graph is sparse, this
property is particularly attractive. This allows us to
process the components in parallel, by independent
agents. Thus, decomposition into biconnected com-
ponents is particularly attractive in the case of STPs,
especially for large problems with sparse graphs.
We show that this decomposition is implicit and au-
tomatic in our ASTP-solver.

4 STP algorithms

Here we discuss four different algorithms to
solve STPs. The first two solvers, F- Wand DPC,
have been extensively studied. However, their
performance in combination with a decomposition
strategy according to articulation points has never
been compared before. The third STP solver we
study is PPC, which has never before been used on
temporal reasoning problems. Finally, we introduce
our new solver, ASTP.

4.1 F- W& DPCwith articulation points

The Floyd-Warshall (F- W algorithm for com-
puting all-pairs shortest-paths is a special case of
the PC algorithm. F- Wis applied to the distance
graph of an STP to compute its minimal network
in ©(n3). As discussed in Section 3, DPCis a sin-
gle pass algorithm and weaker than PC. It does not
necessarily yield a path consistent, minimal, or de-
composable network, but it determines if the STP
is consistent. DPC can be more efficient than F- W
instead of ©(n?), DPC can determine the consis-
tency of STP in O(nW*(d)?), where W*(d) is the
maximum number of parents that a node has in the
induced graph along the ordering d, which can be
substantially smaller than n.

We modify the F- Wand DPC algorithms to ex-
ploit the existence of articulation points in the tem-
poral network. First, we identify the biconnected
components [5], then we execute a particular STP
solver on each component, independently. This

yields two algorithms, F- W+AP and DPC+AP, re-
spectively. It is easy to show that F- WFAP and
DPC+AP never check more constraints than F- W
and DPC. In fact, for a sparse network, our exper-
iments show that they check substantially less. We
also show empirically that, even in the absence of
articulation points, F- WFAP and DPC+AP almost
never require more CPU time than the original al-
gorithms; when they do, the difference is insignifi-
cant due to the overhead for finding the articulation
points.

4.2 PPCalgorithm for STPs

PPC was introduced for general CSPs by Bliek
and Sam-Haroud [1] who showed that the path-
consistency property can be determined in con-
straint graphs by triangulating them instead of com-
pleting them. They showed a significant improve-
ment in performance in comparison to PCin sparse
networks. They also established that, for convex
constraints, both PPC and PC compute the same la-
beling for the edges common to both graphs. Since
the constraints in the STP (constraints of bounded
difference) are convex, we apply for the first time
PPC to solve a continuous domain problem and
compute the minimal network of the STP.

As specified in Figure 2, the PPC algorithm
starts by triangulating the constraint graph G, then
iterates over a queue Qg of all edges, including
those edges added to the temporal graph by the tri-
angulation process. It pops an arbitrary edge e; ;
from the queue, recovers all triangles (i, j,k) in
which e; ; participates, and updates its label I; ; by
composing the intervals I; ;, and I, ; and intersect-
ing the result of this composition with the interval
I; ;. We slightly modify the original algorithm to
allow it to update all three edges at once and to ter-
minate when the queue is empty or inconsistency is
found. The distributivity property of interval addi-
tion over interval intersection guarantees that run-
ning PPC on an STP results in the tightest possible
labeling (i.e., minimal) of the existing edges.

4.3 ASTPalgorithm

The goal of PPC is to make the labels of the
edges of the triangulated constraint graph as tight
as possible. When the label of an edge in a triangle

PPC (P):
Begin
consi st ency « True
G < Triangulate (P)
QE < edgesinG
While Qg A consi st ency Do
ei,j < Dequeue(Qr)
Forall k suchthat (4, 7, k) isasubgraph of G Do
!
I ; < Ii; © (Iik ® I, 5)
! !
When I; ; # Ii,; Then I; ; + I, ; and Enqueue(e;,j, QE)
)))
L < Iik © (I, ® Ijg)
! !
When I; ,, # I;,r Then I; ; < I; ; and Enqueue(e;,x, QE)
!
Liw < ik ® (I,i ® Ii,k))
When Ij,k # Ij,lc Then Ij,lc — Ij,k and Enqueue(ej,k, QE)
When I; ;, I; or I 3 isempty Then consi st ency «+ False
Return consi st ency
End

Figure 2. The PPC algorithm, slightly improved
to consider simultaneously all three edges in a tri-
angle.

is not as tight as it could be, given the labels of the
other edges in the triangle, the label is tightened ac-
cordingly. This process may require tightening the
other edges in the triangle as shown in Figure 3. In

B B B

27 27 = (2.6
[6.9] [6.9] [6.9]

212 [8,12] [8,12]

Figure 3. An example of updating edges. The
label of edge BC then that of AC are updated.

this example we can see that it is worth considering
all three edges of a given triangle simultaneously
and updating them sequentially. This observation
is the basis of our first improvement to PPC, and is
already integrated in the algorithm of Figure 2.
When the label of an edge in a given trian-
gle is updated, PPC triggers constraint propagation
over all the triangles in which any of the edges of
the original triangle participate. This is clearly an
overkill since only the triangles in which the up-
dated edges participate need to considered. This ob-
servation was the motivation for our new algorithm.
While all existing methods consider the tempo-
ral network as composed of edges, our new algo-
rithm considers the STP as composed of triangles
(see Figure 4). The graph of the temporal network

b ¢ A=<ab,c>
d
.
a \.f
e

B=<ab, e

Figure 4. The temporal graph as a graph of tri-
angles.

is replaced by a graph of triangles. Each triangle
is represented by a node, and two nodes are con-
nected if and only if the triangles they represent
have a common edge. Thus ASTP appears as an
AC3-like algorithm [10] on this graph of triangles.
If an edge of the original constraint graph is not a
part of any triangle, it is omitted from the graph of
triangles. Indeed, an edge that does not appear in
any triangle has no effect on the constraint propaga-
tion in the STP and thus can be safely omitted from
the graph of triangles. Consequently:

Proposition 4.1. A tree-structured STP is decom-
posable and consistent, and its edge labels are min-
imal.

We call our new algorithm ASTP, although it
is applicable to general CSPs and would more cor-
rectly be called APPC. The new algorithm is shown
in Figure 5. First, we triangulate the temporal net-

ASTP (P):
Begin
consi st ency « True
G « Triangulate the graph of P
Qr <+ altrianglesin G
WhileQr A consi stency Do
QE + empty list
('57 Js k) <~ Firg(QT)
I; ; <—IIi,j O (Lix @ Iy, 5))
When Ii,j # Ii,]' Then Ii,]' — Ii,j and Enqueue(ei,j,QE)
!
L < Lk ® (Li; ® Ijk)
When I:,k # I, ThenI; ; I;,j and Enqueue(e; x, QE)
7
Ly — ik @ (L, ® Lik)
When I, # I Then I i < I ,, and Enqueue(e;,i, Q)
When I; ;, I; & or I; ;, isempty Then consi st ency « False
When consi st ency
For em,n € Qe DO
T'm ,n < al triangles containing em ,»
For (r,t,s) € Ty, n DO
Unless(r, t, s) € Qr Then Enqueue((r, ¢, s), QT)
Qr + Remcrve((z, Js k)a Qr)
Return consi st ency
End

Figure 5. The ASTP algorithm.

E=<cd e

work, using for example the algorithm devised in
[13], which may result in new edges. We add these
edges to the original constraint graph as universal
constraints setting their label to (—oco,00). Then
we put all the triangles into a queue, Qr, of size
O(|E| degree(G)))*. We check every triangle in the
queue. If a given triangle (7, j, k) is not minimal,
then we update one or more of its edges. We then
retrieve all the adjacent triangles that contain any of
the updated edges and add them to Q if they are
not already there. Finally, we remove (i, j, k) from
the queue, and repeat this process until Q7 is empty
or inconsistency is found.

4.4 Features of ASTP

We summarize the features of ASTP as follows:
e ASTP has the same pruning power as F- Wwith
less effort. ASTP achieves minimality on the trian-
gulated graph, without requiring the completion of
the graph, which is necessary for F- W This yields
dramatic gains in the computational effort.
e ASTP automatically decomposes the graph into
its biconnected components. The decomposition of
the graph into its biconnected components is an ef-
fective technique to bind the search effort and en-
hance the performance of solving a CSP. Our ex-
periments of Figure 7 and 8 and Table 2 and 3 show
how such a strategy can improve the performance
of the F- Walgorithm, even when the articulation
points must be explicitly identified. Because con-
straints propagate through triangles, PPC and con-
sequently ASTP implicitely exploit the decompo-
sition into biconnected components. Consider a tri-
angulated temporal network composed of two sets
of nodes X = {p, 21, z2, ...,z } and Y = {p, 1,
Y2. - - - Yn }, and p is the articulation point. Suppose
that edges exist only between nodes in either X or
Y. Since no edges connect these two sets, there
obviously are no triangles that connect them. All
triangles are either in set X or in set Y. As shown
in Figure 4, two triangles in the graph of triangles
can only be connected by a common edge. There-
fore, no triangle in set X is connected to a triangle
inset Y. When PPCand consequently ASTP prop-
agate constraints through neighboring triangles, no
updates in set X may affect trianglesinsetY. Asa
result, PPC and ASTP implicitly guarantee that ar-

“Notethat 1 < degree(G)) < n

ticulation points in the graph (if any), are expoited,
as if the network was decomposed into its bicon-
nected components without actually decomposing
it.

e ASTP is cheaper than PPC. ASTP and PPC use
the same idea of Bliek and Sam-Haroud [1]; how-
ever, ASTP is more careful about how updates are
propagated and thus exploits triangulation of the
graph more effectively than PPC. Although prop-
agation of PPC occurs through triangles, PPC does
not have a mechanism to record which triangles re-
ally need to be checked. This inability causes some
unnecessary constraint checks and a waste of CPU
time.

e Our improvement in solving the STP directly ben-
efits the task of solving the TCSP. TCSP is NP-hard
and is solved with backtrack search. Every node
expansion in the search tree needs to solve an STP.
Thus a good STP solver is crucial for solving the
TCSP. We are currently demonstrating this idea and
showing how the decomposition into independent
components is particularly useful in this context.

5 Empirical evaluations

We implemented the following six algorithms in
Common Lisp. Floyd-Warshall (F- W, Directed-
Path Consistency (DPC), and in combination with a
mechanism for detecting and exploiting articulation
points, F- W-AP and DPC+AP, Partial Path Con-
sistency (PPC), and our new triangle-based solver
(ASTP). We used three generators of random STPs:
GenSTP- 1, SPRAND, and GenSTP- 2. GenSTP-
1 is our own generator. We designed it to guarantee
that graphs are connected and that at least 80% of
the generated instances are consistent. SPRAND is
one class of STPs generated by the public domain
library SPLI B, [4]. All the problems we gener-
ate with SPRAND have a cycle connecting all the
nodes (i.e., a structural constraint). This guarantees
strong connectivity and the absence of any articu-
lation points. Finally, GenSTP- 2 is a generator
given to us by loannis Tsamardinos and was used in
[14]. GenSTP- 2 does not enforce the existence of
a structural constraint. The density of the temporal
network is defined as Density = %
Table 1 summarizes the characteristics of the prob-
lems tested, including the size of the instances and
the number of samples generated for each measure-

ment point. The results, measured in terms of the
number of constraint checks and CPU time, were
averaged over the number of instances and showed a
precision of 5%. The detailed data of the above ex-
periments on the instances generated by GenSTP-
1 and SPRAND are shown in Table 2 and 3. The
CPU time measurements are made in msec, with a
clock resolution of 10 msec.

5.1 Experiments conducted

Using the 50-node problems generated by
GenSTP- 1, we conducted the following experi-
ments:

e Managing the queue in ASTP. The manner in
which triangles are inserted in the queue affects
the performance of ASTP. We tested three heuris-
tics for adding the triangles to the queue: at the
front of queue (ASTP-front), at the end of
queue (ASTP- back), and random insertion into
the queue (ASTP-randon). All three strategies
resulted in the same output (i.e., the same label of
the edges). The results in terms of constraint checks
are presented in Figure 6. The results show that
ASTP- back consistently performs the least num-
ber of constraint checks. This can be informally in-

180000

GenSTP-1: 50 nodes

160000 ASTP-front
140000
120000
100000

80000

Constraints checks

60000
ASTP-random

B =

a n
ASTP-back

40000 oo

——————————

20000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Density

Figure 6. Constraint Checks for ASTP-f r ont ,
ASTP- back and ASTP-random

terpreted as follows. It is more effective to propa-
gate the constraints as early as possible across the
network, in a ‘sweeping’ manner. Interestingly, we
noticed that quiescence was consistently reached
in 7 or fewer iterations. We use ASTP- back in
the rest of our study.

e Computing the minimal network. F- W F- W+AP,

Table 1. Parameters of problems generated.

Problem size
Generator | #Nodes Density #Edges Samples Results
Range Step | Range Step | per point
GenSTP-1 | 50, 100 [0.01, 0.1] 0.01 100 Table 2 and
50, 100 [0.2,0.9] 0.1 100 Figure 6,7,8
SPRAND 50 [200, 2000] 200 100 Table 3
100 [400, 1400] 200 100
100 [1600, 2800] 400 100
257 0.016 768 5 Figure 9
513 0.008 1536 5
GenSTP-2 256 0.016 3x256 = 768 5 Figure 9
512 0.008 3x512 = 1536 5
140000 1
. wes 0.9 A . GenSTP-1: 50 nodes
~ 08 WAL B
E 100000 J- ot rlf"&“x\«y/ \Q*T(,;:ﬁ:::?f::i:?::ﬁf:j
5 50000 : F-W+AP Zos ** WiAP - ppC
ot/ e
g 60000 fu PPA(‘ g ot ?(, ’ P AS?P e
S 10000 N 0.3 ;’ . N
20000 £ e T ssTe o2 X ~
R * 0.1 o
. e . et

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Density

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Density

Figure 7. Constraint Checks (left) and CPU time (right) for F- W F- W+AP, PPC, and ASTP.

PPC and ASTP (but not DPC) result in the labels
of the common edges, the minimal labels. Figure 7
shows that ASTP clearly and significantly domi-
nates all others, for all values of density.

e Saving on the constraint checks. DPC does not
necessarily yield the minimal network, but it can
determine whether or not the network is consistent
in significantly fewer constraint checks than F- W
Figure 8 shows that ASTP, which is more powerful
in terms of pruning power and yields the minimal
network, dominates DPC-like strategies when den-
sity is less than 50%.

o Effect of problem size. In order to compare the
performance of these different solvers on larger
problems, we tested them on larger problems gener-
ated by SPRAND and GenSTP- 2. Figure 9 and 10
show the ratio of the number of constraint checks
and that of the CPU time needed for all six strate-
gies in reference to the values needed for F- W

5.2 Observations

From the above experiments, we draw the fol-
lowing observations:
e Using articulation points. Dechter et al. [8]
showed that decomposing the temporal network
into its biconnected components is particularly ef-
fective in enhancing the performance of search. It
is worth recalling that this decomposition does not
affect the quality of the solution: the same edge
labels are found with and without decomposition.
Figure 7 and 8 show that only F- Wrealizes sig-
nificant savings when the density is low. In con-
trast, decompostion into biconnected components
does not benefit the DPC solver to the same ex-
tent. This can be explained by the fact that the
cost of DPC is bounded by O(nW*(d)?), where
W*(d) is the maximum number of parents that a
node has in the induced graph. Decomposition does
not significantly change the induced width W*(d);
the total cost of solving the subproblems is not sig-

Table 2. Experimental results for STP solvers on random STP generated by GenSTP- 1.

Random STP generated by GenSTP- 1 with 50 nodes
FwW F- WAP DPC DPC+AP PPC ASTP
Density cc CPU () cc CPU (9 cc CPU (9 cc CPU (3 cc CPU () cc CPU (3
0.01 122200.5 0.822 29924.05 0.2091 1777.03 0.1168 744.44 0.0307 27397 0.0039 125.75 0.0025
0.02 123001.5 0.8347 59091.93 0.4026 3572.7 0.1304 2364.62 0.0683 837.9 0.0109 409.64 0.0045
0.03 120339.99 0.8389 79195.61 0.5297 4769.95 0.1376 3833.36 0.0945 1532.55 0.02 761.71 0.0091
0.04 120044.01 0.8063 90934.63 0.6029 6411.11 0.1547 5525.58 0.1176 2529.68 0.03 1270.41 0.0115
0.05 1173825 0.7935 99076.94 0.6591 8106.14 0.161 7510.24 0.1394 3766.13 0.0433 1910.97 0.0188
0.06 120075.49 0.8209 108975.06 0.7251 10204.46 0.1804 9746.2 0.1679 5207.57 0.0599 2622.19 0.0269
0.07 120940.51 0.8637 113426.05 0.756 11487.391 0.189 11175.431 0.1818 6679.19 0.0782 3445.79 0.0358
0.08 116800 0.7862 112267.63 0.7598 11715.94 0.1894 1144712 0.181 7861.92 0.0879 4109 0.0424
0.09 115321.5 0.7778 112951.92 0.7525 13024.311 0.1976 12915.95 0.1986 9240.66 0.1031 4800.74 0.0531
0.1 116336.5 0.7947 114676.23 0.7617 14072.08 0.2115 13975.311 0.207 10857.08 0.1247 5705.62 0.0649
0.2 108926.5 0.7335 108852.99 0.7342 21203.27 0.2717 21203.262 0.2705 23677.2 0.2624 12631.6 0.1533
03 120195.99 0.8113 120195.99 0.8019 28912.988 0.347 28912.988 0.3442 41404.09 0.4637 22206.16 0.2676
0.4 106959.5 0.7213 106959.5 0.7147 27121.85 0.3313 27121.85 0.3252 43483.79 0.4958 23388.791 0.291
0.5 108896.5 0.7487 108896.5 0.732 29731.49 0.3506 29731.49 0.3514 53446.668 0.6162 28504.24 0.3553
0.6 109074.99 0.7376 109074.99 0.7314 31533.85 0.3732 31533.85 0.3692 57422.24 0.6662 30716.22 0.4083
0.7 109592 0.7502 109592 0.7294 32002.16 0.3795 32002.16 0.3725 62265.727 0.7224 33464.38 0.4269
0.8 10742851 0.7298 107428.51 0.7116 32391.83 0.3816 32391.83 0.3719 64625.727 0.7439 34257.42 0.443
0.9 108566.5 0.741 108566.5 0.7207 33249.992 0.3925 33249.992 0.3796 67977.31 0.7931 36429.34 0.4616
Random STP generated by GenSTP- 1 with 100 nodes
0.01 976155.06 8.3611 486223.66 4.088 21574.19 1.0156 14401.68 0.5275 4424.22 0.0586 2225.99 0.0108
0.02 955417 8.2284 737264.25 6.2037 45044.293 1.3432 39022.73 0.9329 14764.17 0.2035 7803.66 0.0772
0.03 944883 7.9927 855073.25 7.142 71363.34 1.3655 67750.06 1.2528 31849.158 0.3818 16698.209 0.1795
0.04 920881.06 7.8254 879589.9 7.3463 89384.945 1.4859 87387.805 1.4347 49463.91 05777 26350.969 0.3076
0.05 931483.06 7.8308 918906.56 771 115620.83 1.7429 114994.93 17121 72491.46 0.8411 38301.637 0472
0.06 886372.94 7.5324 879934.7 7.3403 116526.336 1.6933 116144.984 1.6616 85443.125 1.0262 45141.34 0.5847
0.07 916842 7.7882 914465.9 7.6159 145073.03 1.9288 144846.11 1.9396 113607.77 1.3013 61303.09 0.8185
0.08 924955.94 7.907 924361.94 7.7039 148479.61 1.9416 148393.72 1.9335 129904.16 1.4633 70892.98 0.9267
0.09 935953 7.9439 935805.6 7.7978 16719217 2.1092 167192.17 21225 161399.25 1.8614 86110.63 1.1857
0.1 895177 7.7186 894583 7.4615 165887.34 2,086 165803.48 2.0561 165634.69 1.9312 90790.92 1.2733
0.2 883597 7.5387 883597 7.3604 218225.31 2.4666 218225.31 24527 320976.06 3.7723 175113.86 2.6166
0.3 860400 7.4074 860400 7.1667 23237225 2.5446 232372.25 25384 396075.3 4.7658 219178.31 3.3071
0.4 833850 7.1203 833850 6.9936 240254.4 2.6094 240254.4 2.5553 446748.47 5.4984 247012.77 3.805
0.5 879490.06 7.554 879490.06 7.3287 262964.03 28133 262964.03 27976 520176.78 6.4435 287163 4.4565
0.6 891914.06 7.6565 891914.06 7.4904 276184.53 2.9108 276184.53 28815 564749.56 6.734 309157.75 4.7986
0.7 866636 7.4485 866636 7.3051 267027.4 2.8092 267027.4 2.8233 554381.6 6.5875 303306.12 4.7356
0.8 847892 7.3271 847892 7.2994 258738.61 2733 258738.61 26769 552344.1 6.4986 299997.22 4.8764
0.9 854969 7.3954 854969 7.3383 266861.47 2.8032 266861.47 2.7704 568128.25 6.7406 309514.87 4.9663

nificantly smaller than that of solving the original
problem. When density is high, the network can-
not be decomposed, and F- W+AP and DPC+AP per-
form almost the same as F- Wand DPC, respectively.
The problems generated by SPRAND cannot be de-
composed because of the existence of a cycle that
connects all nodes (i.e., structural constraint). In-
deed, Table 3 shows the same number of constraint
checks for the algorithms with and without articula-
tion points. However, the required effort for finding
these articulation points is negligible, as CPU times
are the same within the resolution of the clock.

o Improvements due to PPC: Given the constraint
semantics, PPC is guaranteed to yield the same la-
bels as F- Wand F- W+AP on their common edges.
Since PPC operates on the triangulated graph, it
performs significantly better for low density values
than F- W which operates on the complete graph,
and even F- WFAP, which exploits the existence of
articulation points. When the constraint density in-
creases, the number of triangles in the graph also
increases and so does the cost of PPC. However,
the number of constraint checks and, to some ex-
tent, the CPU time for PPC remain less than those
for F- Wand F- W+AP, which quickly reach a stable

value, ©(n?). For the larger problems generated by
SPRAND and GenSTP- 2), Figure 9 and 10 show
the PPC outperforms DPC and DPC+AP, which in
turn outperform F- Wand F- W+AP. Note, however,
that DPC and DPC+AP do not yield the tightest net-
work. A comparison of Figure 9 and 10 shows
that the performance of PPC is better on problems
generated by GenSTP- 2 than on those generated
by SPRAND. This is due to the existence of a cy-
cle connecting all the nodes in problems generated
by SPRAND, which prevents decompositions and
causes the triangulation process to add relatively
more edges.

o Improvements due to ASTP. As a refinement of
PPC, ASTP exploits the benefits of triangulation
to a greater degree than PPC does. Experimental
results show that ASTP has always better perfor-
mance than PPC in all experiments we performed
(Figure7 and Table 2 and 3). For high density val-
ues, ASTP can show a worse performance than
DPC (Figure 8). However, this slight degradation is
misleading since it does not account for the output
of these two algorithms. Indeed, ASTP guarantees
the minimal network and DPC does not. Hence, the
performance of the former remains superior. The

Table 3. Experimental results for STP solvers on random STP generated by SPRAND.

Random STP generated by SPRAND with 50 nodes
Number of FwW F- WAP DPC DPC+AP PPC ASTP
Edges cc CPU (s) cc CPU (s) cc CPU (3 cc CPU (s) cc CPU (s) cc CPU (s)
200 125000 0.8467 125000 0.8255 21824.031 0.2798 21824.031 0.2847 20247.77 0.236 12111471 0.1595
400 125000 0.8492 125000 0.8301 30981.5 0.3677 30981.5 0.3732 42313.25 0.4893 25902.35 0.347
600 125000 0.8441 125000 0.8244 34524.73 0.4044 34524.73 0.4035 56231.418 0.6606 34142.043 0.4656
800 125000 0.8467 125000 0.8274 36254.89 0.4255 36254.89 0.4176 64894.547 0.7594 39436.86 05334
1000 125000 0.8457 125000 0.8281 37302.24 0.4369 37302.24 0.4318 69790.15 0.825 42623.07 0.5697
1200 125000 0.8521 125000 0.8242 38020.63 0.4473 38020.63 0.4382 73899.914 0.8671 44889.09 0.5796
1400 125000 0.8501 125000 0.8243 38502.508 0.4556 38502.508 0.4442 76743 0.9067 46354.59 0.608
1600 125000 0.8513 125000 0.8331 38902.95 0.4647 38902.95 0.4458 79116.336 0.927 47597.69 0.6287
1800 125000 0.8553 125000 0.8343 39166.152 0.4694 39166.152 0.4532 80540.03 0.9526 48321.05 0.6306
2000 125000 0.8621 125000 0.8363 39381.36 0.4577 39381.36 0.4519 81024.4 0.9536 48789.93 0.6291
Random STP generated by SPRAND with 100 nodes
400 1000000 8.5076 1000000 83707 167877.39 21703 167877.39 21947 144819.36 1.7659 85055.414 1.4427
600 1000000 8.5019 1000000 83572 218599.22 2.5686 218599.22 25723 241016.73 2.8585 146966.83 25927
800 1000000 85177 1000000 83523 245378.12 2775 245378.12 2.7759 318725.3 3.7333 198716.12 3441
1000 1000000 85218 1000000 8.3476 263177.97 29213 263177.97 2.9205 380805.94 4.4388 236103.58 4.1202
1200 1000000 8.6507 1000000 8.3242 275036.7 3.0351 275036.7 3.0053 434212.72 5.0349 268235.28 4.6083
1400 1000000 8.6643 1000000 83216 283548.44 3.0986 283548.44 3.0367 474789.12 5.4202 292905.87 4.886
1600 1000000 8.7028 1000000 8.3169 289520.4 3.1461 289520.4 3.082 512087.9 6.1406 313113.25 54773
2000 1000000 8.7978 1000000 8.3284 298104.53 3.2074 298104.53 3.148 565111.94 6.9515 343748.66 6.0293
2400 1000000 8.5296 1000000 8.3569 303608.8 3.2493 303608.8 3.2088 599295 6.7189 365377.84 5.9462
2800 1000000 8.8195 1000000 8.341 307894.12 3.2842 307894.12 3.2199 631238.44 7.3478 382691 6.1807
40000 0.5
25000 GenSTP-1: 50 nodes . I GenSTP-1: 50 nodes
30000 |-
E
2 25000 @
S <
o o
2 20000 g
S e
H
2 15000 E
S
10000 -
5000 -

0.5 0.6
Density

0.4 0.7 0.8 0.9

0.6

0.5
Density

0.7 0.8 0.9 1

Figure 8. Constraint Checks (left) and CPU time (right) for DPC, DPC+AP, and ASTP.

experiments on large problems, shown in Figure 9
and 10, demonstrate that ASTP is the absolute win-
ner over all algorithms. A comparison of Figure 9
and 10 shows that ASTP, like PPC, is sensitive to
the structure of the temporal graph (i.e., the exis-
tence of a cycle). It is more effective on problems
generated with GenSTP- 2 than on those generated
with SPRAND.

5.3 Significance of our results

In practice, most real-world applications exhibit
typically STPs with large size and low density [2].
The performance of an STP solver in these situa-
tions becomes extremely important. ASTP is per-
fect for this kind of job. Its outstanding performance
under low density is particularly advantageous and
makes it the best algorithm developed to date. Fur-
ther, when solving a TCSP with search, the STP ex-
amined at each node in the search tree is a subgraph

of the original TCSP and thus has a lower den-
sity than the TCSP. This supports the importance
of an efficient STP solver for low density networks.
We expect the combination of ASTP with a TCSP
solver to improve dramatically the performance of
current TCSP solvers.

6 Conclusion and futurework

We introduced ASTP, a new efficient algorithm
for solving the STP. Our algorithm advantageously
exploits previous results reported in the literature
and binds them via a new strategy for constraint
propagation based on triangles. We demonstrated
that this algorithm outperforms all previous ones
in terms of pruning power and performance. We
are currently integrating our new STP solver with
a TCSP solver to improve the performance of the
latter. More importantly, ASTP solver provides us

GenSTP-2: 256 nodes — g oas
512 nodes

|

Ratio (compare to F-W)
LT T

Various STP solvers

Ratio (compare to F-¥)

GenSTP-2: 256 nodes
512 nodes

Various STP solvers PR

Figure 9. Constraint Checks (left) and CPU time (right) for STP solvers, problems generated by GenSTP- 2.

SPRAND: 257 nodes
513 nodes

Constraint Checks

Ratio (compare to F-W)

Various STP solvers

Ratio (compare to F-W)

300

250

200

150

100

50

I ‘5‘ 20, r6ms00
- 1. 00E+00 1. 01E+00
5 édé o = &
&&p 1008+ <7
— g

SPRAND: 257 nodes
513 nodes

CPU time

1. 01E+00

DPC

DPC+AP
¥ F-W+AP

Various STP solvers

Figure 10. Constraint Checks (left) and CPU time (right) for STP solvers, problems generated by SPRAND.

with a new perspective on temporal problems as
composed by a set of triangles, where two triangles
are connected if and only if they have one common
edge. Constraint propagation can be carried out ac-
cording to this new graph of triangles. We are ex-
ploiting this idea to improve the search performance
of the TCSP solver.

Acknowledgments: We are indebted to Mark Boddy,
Paul Morris, Nicola Muscettola and loannis Tsamardi-
nos for sharing data and information on the STP, and to
Deb Derrick for editorial help. This work is supported
by a grant from NASA-Nebraska, the CAREER Award
#0133568 from the National Science Foundation, and a
gift from Honeywell Laboratories.

References

[1] Christian Bliek and Djamilla Sam-Haroud. Path

Consistency for Triangulated Constraint Graphs. In

10

[2]
(3]

[4]

(5]

6]

(7]

Proc. of the 16 ** 1JCAI, pages 456—461, Stock-
holm, Sweden, 1999.

Mark Boddy. Personal communication, 2002.

Amedeo Cesta, Angelo Oddi, and Stephen Smith. A
constraint-based method for project scheduling with
time windows. Journal of Heuristics, 8(1):109-136,
April 2002.

Boris V. Cherkasskyn, Andrew V. Goldberg, and
Tomasz Radzik. Shortest Paths Algorithms: Theory
and Experimental Evaluation. Mathematical Pro-
gramming, 73:129-174, 1996.

Thomas H. Cormen, Charles E. Leiserson, and
Ronald L. Rivest. Introduction to Algorithms.
McGraw-Hill Book Co & MIT Press, 2001.

Thomas Dean and Drew McDermott. Temporal
Data Base Management. Artificial Intelligence,
32:1-55, 1987.

Rina Dechter. Constraint Processing. Manuscript,
forthcoming, 2003.

(8]

[9]

[10]

[11]

[12]

[13]

[14]

Rina Dechter, Itay Meiri, and Judea Pearl. Temporal
Constraint Networks. Artificial Intelligence, 49:61—
95, 1991.

Eugene C. Freuder. A Sufficient Condition for
Backtrack-Bounded Search. JACM, 32 (4):755—
761, 1985.

Alan K. Mackworth. Consistency in Networks of
Relations. Artificial Intelligence, 8:99-118, 1977.

Ugo Montanari. Networks of Constraints: Funda-
mental Properties and Application to Picture Pro-
cessing. Information Sciences, 7:95-132, 1974.

Nicolas Muscettola, Paul Morris, and loannis
Tsamardinos. Reformulating Temporal Plans for
Efficient Execution. In Sixth International Con-
ference on Principles of Knowledge Representation
and Reasoning (KR’98), pages 444-452, Trento
Italy, 1998.

U. Kjeerulff. Triagulation of Graphs - Algorithms
Giving Small Total State Space. Research Report
R-90-09, Aalborg University, Denmark, 1990.

loannis Tsamardinos. Reformulating Temporal
Plans for Efficient Excution. Master’s thesis, Intel-
ligent Systems Program, University of Pittsburgh,
1998.

11

