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1 Abstract

In this paper, we address the task of finding the minimal network of a Temporal Con-
straint Satisfaction Problem (TCSP). We report the integration of three approaches to
improve the performance of the exponential-time backtrack search (BT-TCSP) pro-
posed by Dechter et al. [6] for this purpose. The first approach consists of using a new
efficient algorithm ( � STP) [21] for solving the Simple Temporal Problem (STP), an
operation that must be executed at each node expansion during BT-TCSP. The second
approach improves BT-TCSP itself by exploiting the topology of the temporal network.
This is accomplished in three ways: finding and exploiting articulation points (AP),
checking the graph for new cycles (NewCyc), and using a new heuristic for edge or-
dering (EdgeOrd). The third approach is a filtering algorithm, � AC, which is used as
a preprocessing step to BT-TCSP, and which significantly reduces the size of the TCSP
[22]. In addition to introducing two new techniques, NewCyc and EdgeOrd, this pa-
per discusses an extensive evaluation of the merits of the above three approaches. Our
experiments on randomly generated problems demonstrate significant improvements in
the number of nodes visited, constraint checks, and CPU time.

2 Background and Motivation

A Simple Temporal Problem (STP) is defined by a graph �����
	���
������ where 	 is a
set of vertices � representing time points ��� ; 
 is a set of directed edges ����� � representing
constraints between two time points ��� and ��� ; and � is a set of constraint labels for the
edges, see Fig. 1 (left). A constraint label ����� � of edge ����� � is an interval  !"�$#&% , !'�$#)(+* ,
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Fig. 1. Left: STP. Right: TCSP.

and denotes a constraint of bounded difference !�, (� �.- � � �/,0# . Note that � ��� � =  !"�&#&%1 � �&� � =  - #�� - !2% . A Temporal Constraint Satisfaction Problem (TCSP) is defined by a
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similar graph � = �
	���
 �&� � , where each edge label ����� � = �������	�� � � ����
��� � , 
�
�
 , �	������ ��� is a set of
disjoint intervals denoting a disjunction of constraints of bounded differences between �
and � , see Fig. 1 (right). We assume that the intervals in a label are disjoint and ordered
in a canonical way. The following is a typical example:

Tom has class at 8:00 a.m. He can either make breakfast for himself (10-15
minutes), or get something to eat from a local store (less than 5 minutes). After
breakfast (5-10 minutes), he goes to school either by car (20-30 minutes) or by
bus (at least 45 minutes). Today, Tom gets up between 7:30 a.m. and 7:40 a.m.

We wish to answer queries such as: “Can Tom arrive at school in time for class?”, “Is it
possible for Tom to take the bus?”, “If Tom wanted to save money by making breakfast
for himself and taking the bus, when should he get up?”, and so on. This temporal
problem can be represented as a temporal graph.

Let ��� be a reference time-point (e.g., 6:00 am), � � the time point Tom gets up, � 

the time point he starts his breakfast, ��� the time point he finishes it, and ��� the time
point he arrives at the school. Fig. 2 shows the temporal graph of this TCSP.
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Fig. 2. A TCSP example.

Dechter [5] described a backtrack search procedure (BT-TCSP) for solving a TCSP,
which is an NP-hard problem. To this end, the TCSP is expressed as a ‘meta’ Constraint
Satisfaction Problem (meta-CSP). The variables of the meta-CSP are the edges � ��� � of
� . Their number depends on the density of the temporal graph. The domain of a vari-
able ����� � is its label, � ��� � = ���	���	�� � ,

�	��
��� � , 
�
�
 , �	������ ��� . A partial solution is a set
� ����� � � �������� � � �

of variable-value pairs (vvps) that form a consistent STP, which is a global constraint.
A complete solution is a consistent STP in which all the edges of � appear. The mini-
mal network of the TCSP is the union of all complete solutions. Each node in the tree
generated by BT-TCSP is an STP ��� that has 
�� edges, a subset of the edges of the
original network ( 
 �! 
 ), each labeled with a unique interval from its domain. When
� � is consistent, the node is expanded by adding to � � an edge from �

 - 
 � � labeled
with an interval from its domain. This yields a new STP that is checked again for con-
sistency. Fig. 3 illustrates the tree corresponding to the example of Fig. 2, where edges
are considered in their lexicographical order.

In this paper, we combine the following techniques to improve the performance of
BT-TCSP, and demonstrate their effectiveness on randomly generated problems:

1. Every node in the tree is an STP that needs to be solved before the search can
proceed. Hence, the performance of a TCSP solver depends critically on that of the
STP solver. We compare for the first time the performance of various known STP
solvers, including a new one, � STP, that we proposed in [21]. We show that it



3

[45,       ]

e  :e  : e  :5 [0, 120][0, 120][0, 120]5 5

e  :2

3

e  :

e  :

e  : [20, 30] e  :

e  :

e  :[10, 15] [0, 5]

[5, 10]

 [20, 30]

2

3

4 4 4

[5, 10]

e  :1 [90, 100]

e2

e2

e2

e2e1

e1

e1

e1

e1

e3

e3
e4e5

e3

e4

0

21
p

p

p
3

p

p
4

0

21
p

p

p
3

p

p
4

0

21
p

p

p
3

p

0

21
p

p p

0

1
p

p

Fig. 3. The search tree for the example of Fig. 2.

outperforms all others. Note that the performance of the STP solver does not affect
the number of nodes visited in BT-TCSP.

2. One well-known technique to improve the performance of a CSP is to decompose
it into sub-problems using its articulation points [9, 11, 6], and to solve the sub-
problems independently. We provide for the first time an empirical evaluation of
the effectiveness of this technique.

3. Further exploiting the topology of the temporal network, we show how to avoid
running an STP-solver by checking for the existence of new cycles (NewCyc) in
the network as edges are added along a given path in the tree. In the example of
Fig. 3, the first four consistency checks are unnecessary because there are no cycles
in the respective networks and the corresponding STPs are always consistent.

4. Another way to improve the performance of BT-TCSP is to find a good variable-
ordering heuristic for the search. This corresponds to a sequencing of 
 , the edges
of � , as they are added along a given path in the tree. A good sequence reduces
unnecessary backtracking and also the number of constraint checks. We introduce
a new ordering heuristic (EdgeOrd) that exploits the adjacency of existing triangles
in the graph to determine the ordering of their edges in the tree.

5. We reduce the domains of the variables of the meta-CSP by using the efficient
filtering algorithm, � AC, described in [22].

The contributions of this paper can be summarized as follows:

1. A new technique for saving constraint checks (NewCyc) and a new ordering heuris-
tic (EdgeOrd).

2. The combination of the above listed techniques (i.e., an STP-solver, AP, NewCyc,
EdgeOrd, and � AC) to find all the solutions of the TCSP.

3. Empirical evaluation and analysis of the effectiveness of these techniques and their
combinations to demonstrate their significance.

This paper is structured as follows. Section 3 reviews the STP-solvers used. Section 4
discusses the three improvements exploiting the topology of the temporal network. Sec-
tion 5 summarizes a filtering algorithm used as a preprocessing step. Section 6 describes
our experiments and observations. Finally, Section 7 concludes this paper.
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3 Algorithms for Solving the STP

TCSP is NP-hard and is solved with backtrack search. Every node expansion in the
search tree needs to check the consistency of an STP. Thus a good STP solver is critical
for solving the TCSP. We test the following STP solvers: Directed Path Consistency
DPC [7], Partial Path Consistency PPC [2], and Triangle-STP � STP [21].

3.1 Solving the STP Using Directional Path Consistency (DPC)

A basic algorithm to solve an STP is the Floyd-Warshall algorithm (F-W), which com-
putes all-pairs shortest-paths in a distance graph [4]. F-W guarantees consistency, mini-
mality, and decomposability and has a complexity of � ��� � � . Montanari showed that
F-W is a special case of the Path Consistency (PC) algorithm [15]. Dechter et al.
propose the Directed-Path Consistency (DPC) algorithm [7]. This algorithm is never
more costly than F-W, runs in � ��� � � , and can determine the consistency of an STP in
� ���/�����2��	 ��� 
 � , where �
� ��	 � is the induced width of the graph along a given ordering
	 . DPC determines the consistency of the STP, but does not necessarily yield the min-
imal and decomposable network. Since only the consistency of an STP matters during
BT-TCSP, we use DPC instead of F-W because of its lower cost.

3.2 Solving the STP Using Partial Path Consistency (PPC)

Bliek and Sam-Haroud introduced Partial Path-Consistency (PPC), an algorithm appli-
cable to general CSPs (and not restricted to temporal networks) [2]. PPC works on a
triangulated graph, unlike the PC algorithm which requires a complete graph. Further,
Bliek and Sam-Haroud showed that when the constraints are convex, the PC algorithm
(operating on the complete graph) and the PPC algorithm (operating on the triangulated
graph) yield equivalent results: the same labeling for the edges common to both graphs
and the minimality and decomposability of the STP. PPC never requires more constraint
checks than PC, which is advantageous when the (triangulated) graph is sparse. This is
particularly attractive in BT-TCSP, which requires solving an STP at each node.

PPC requires that the graph be triangulated, which may result in new edges being
added to the graph. We triangulate the temporal network using the algorithm devised
in [17]. We represent the new edges as universal constraints in the original constraint
graph and set their label to � -�� � � � .

In the tree generated by BT-TCSP, each node represents an STP whose graph adds
exactly one edge to the graph of the parent of the node (and must be triangulated to be
used by PPC). Assuming a static ordering in the tree, the total number of graphs that
appear along any given complete path is exactly equal to the number of edges in the
original problem. Further, all nodes at a given level of the search tree have the same
graph (only the edge labelings may vary). Thus, under static ordering, the number of
possible graphs considered during the BT-TCSP process is exactly equal to the total
number of edges in the temporal network.

We test two methods for accessing the triangulations of the STPs given a static
variable ordering, Fig. 4. In the first method, Plan A, we pre-compute all the STPs
needed in search, triangulate them, and store their triangulations for use during search.
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All-triangulated-subgraphs ( ��� , � )
��� nil
TriSubGs � nil� ��� all edges in ��� using ordering �
For �
	 � � do

Push( � , � )
Push(Triangulate( � ), TriSubGs)

Return Reverse(TriSubGs)

Induced-subgraphs ( ��� , ��
 )� � � edges of � �� 
�� all nodes 	���
� 
�� nil
Forall � 
�� � 	 � �

When ��	 � 
 and ��	 � 

Then Push( ��
�� � , � 
 )

Return
� 


Fig. 4. Left: List of triangulated subgraphs given an ordering. Right: Inducing a subgraph from
the triangulated original graph.

In the second method, Plan B, we triangulate the entire network only once. We then
induce from the triangulated graph the subgraph whose vertices form the STP under
consideration. Since the original graph is triangulated, each induced subgraph is also
triangulated.

– Plan A: Given a variable ordering 	 , the list of the graphs considered during BT-
TCSP is generated as shown in Fig. 4 (left). Push adds an item to a list, Reverse
reverses a list, and Triangulate triangulates a graph. We use the ��� � element of
TriSubGs list as the triangulated subgraph for the node at the � � � level of the tree.

– Plan B: Here we compute the triangulated graph only once and induce from it the
subgraph needed at every step. Fig. 4 (right) shows the algorithm where � � is the
triangulated graph of the original network and � � is the subgraph considered at
level ��, � ,�� 
�� in the search. Note that this technique may end up considering
denser graphs than necessary, which increases the cost of solving the STP.

Our experimental results show that Plan A always outperforms Plan B in terms of the
number of constraint checks and CPU time. Note that neither of these two plans affects
the number of backtracks (the number of nodes visited) in BT-TCSP.

3.3  STP Algorithm Used with TCSP Algorithm

� STP algorithm yields the same minimal network as F-W and PPC. It uses the idea
of triangulation and considers the temporal graph as composed of triangles instead of
edges. Constraint propagation is ‘triangle-based’ rather than ‘edge-based.’ As a finer
version of PPC, � STP can find the minimal network with less cost than F-W and
PPC. When density is low, � STP is even cheaper than DPC, which does not guarantee
the minimal network. Similar to PPC, the pre-requisite condition for � STP is to first
triangulate the temporal graph. We have introduced two plans to obtain triangulated
subgraphs in the previous subsection. We will use Plan A for its lower cost in practice.

When solving a TCSP with search, the STP examined at each node in the search
tree is a subgraph of the original TCSP. Since the STPs we need to check always have
lower density than the original TCSP, the outstanding performance of � STP under low
density makes it even more attractive to use for solving the TCSP.
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4 Exploiting the Topology of the Constraint Network

We propose three topology-based techniques to enhance the performance of search.
While the first technique is applied prior to search to decompose the problem into
independent components, the last two are intertwined with the search process.

4.1 Decomposition Using Articulation Points

The existence of articulation points in the graph of the temporal network can be used to
decompose the network into its biconnected components, which can be solved indepen-
dently. Finding the articulation points can be done in � � � 
 � � [4]. This method provides
an upper bound to the search effort in the size of the largest biconnected component
[11]. It can effectively reduce the number of constraint checks in BT-TCSP and the
number of nodes visited in its tree. A solution to the entire network is a combination
of any of the solutions of the biconnected components. The total number of solutions
is:
� �������� �	� � , where � � is the number of solutions for component � . This conjunc-

tive decomposition of the temporal network [12] allows us to solve the sub-problems in
parallel, as in a multi-agent system. Articulation points usually appear only when the
density is low or when the TCSP has a special topology. Note that even in the absence
of articulation points, we could ‘induce’ such decompositions by removing some edges
of the graph, in a manner similar to the cycle-cutset method of Dechter and Pearl [8].
We have implemented the mechanism for finding and using existing articulation points
but not yet explored how to induce their existence.

4.2 New Cycle Check

The inconsistency of an STP is detected by the existence of a negative cycle in its dis-
tance graph. When the graph of an STP has no cycles, the STP is necessarily consistent.

Proposition 1. A tree-structured constraint network is necessarily globally consistent.

Note that is a stronger result than using the tree-structure of the constraint graph, which
requires ensuring 2-consistency [10]. In BT-TCSP, nodes are expanded by adding one
edge at a time. When the addition of a new edge does not yield a new cycle in the graph,
a consistent STP remains consistent regardless of the labeling chosen for the new edge.
We exploit this observation to save unnecessary consistency checks.

Corollary 1. When the addition of an edge to a globally consistent STP yields no new
cycles, the resulting STP is globally consistent.

1

2

3

4

5

Fig. 5. Simple constraint graph.
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Consider the example of Fig. 5. Suppose that search adopts the following ordering of
the edges: � � � 
 , � 
 � � , � � � � , � � � � , � 
 � � , and ��� � � . Fig. 6 shows the configurations of the
STPs checked for consistency at each level in the search.

Search level 1 2 3 4 5 6

STP 1

2

31

2

1

2

3 1

2
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3
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Checking strategy Total
Always

� � � � � �
6

NewCyc � �
�

�
�

� 2

Fig. 6. Comparison of STP checks using the new-cycle check heuristic.

Along a given path, as the tree generated by search is being explored in a depth-first
manner, two strategies can be adopted at a given level: (1) Always check the STP for
consistency, and (2) check the consistency of the STP only when a new cycle has been
added to the network. At levels 1 and 2, no cycles exist in the graph, and the STP is
necessarily consistent, Fig. 6. At levels 4 and 6, no new cycles have been added to the
graph of levels 3 and 5 respectively, and the corresponding STPs remain necessarily
consistent regardless of their labeling. As illustrated above, checking for new cycles
saves us unnecessary operations. Further, when the addition of a new edge yields a new
cycle, two biconnected components of the previous level are necessarily merged into a
new biconnected component at the current level. We need to check only the consistency
of the newly formed biconnected component, and we can safely ignore the rest of the
temporal network. This allows us to localize the effort of consistency checking to the
necessary part of the network.

Corollary 2. When the addition of an edge to a globally consistent STP yields a new
cycle, the resulting STP is globally consistent if and only if the newly formed bicon-
nected component is a consistent STP.

The application of this new heuristic, NewCyc, significantly enhances the performance
of solving the meta-CSP with search. To apply it, we need to identify, between two
levels of the search tree, (1) that a new cycle has been introduced and (2) the two
biconnected components that were merged as a result. This is done by running the
� � � 
�� � algorithm for finding articulation points at each level, checking whether the
number of biconnected components was reduced between two levels, and identifying
the component to be checked as that containing the new edge.

4.3 Ordering Heuristic for the Meta-CSP

Variable ordering is an effective heuristic for improving the performance of search. In
general, it is governed by the ‘fail first principle.’ The shallower the node pruned in the
tree, the larger the pruned subtree, and the larger the cost savings. For the meta-CSP,
a node is pruned when it corresponds to an inconsistent STP. Thus, the ordering of the
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edges (which are the variables of the meta-CSP) affects how quickly an inconsistent
STP is found and also the effectiveness of constraint propagation in the STP.

As stated in Corollary 1, along a given path, no inconsistency may occur between
one level and the next unless at least one new cycle is formed in the temporal graph.
Consequently, a reasonable ordering heuristic is to first consider those edges that form
triangles with edges existing in the STP. This may allow us to uncover inconsistencies
as early as possible. It also increases the effectiveness of backtracking, because it is
more likely to undo an inconsistency by changing the labeling of an edge in the same
triangle as the one that yielded the inconsistency than that of a random edge. Our new
edge-ordering heuristic orders the edges of the temporal graph in such a way that the
network is expanded triangle by triangle ‘around’ the existing edges. The algorithm,
given in Fig. 7, returns the list of edges in the order to be used by the search. It uses
basic operations on lists. Append concatenates two lists in the order provided. Pop
removes and returns the first item in a list. It requires that each edge be associated with

EdgeOrd ( � )� ��� all edges of �� � nil
While

� � do
��
�� � � Edge of

� � appearing in the largest number of triangles in
� �� � Append (

�
,
� � 
�� ������ � nil

While � 
�� � do
Forall � such that � ��� is a subgraph of � do� � Append (

�
,
� � 
 � � , � � � � � ), � � Append (

�
,
� � 
 � � , � � � � � )� � � � ��� � � 
 � �	� ��
 � � , � � � ��� , � 
�� � � Pop(

�
)

Return
�

Fig. 7. Edge ordering heuristic.

the number of triangles in which it appears in � , which is bounded by ��� - � � , where
� is the number of nodes in � (i.e., the time points). We obtain these numbers as a
by-product of the implementation of the triangulation algorithm.

Based on the topology of the network, we choose the edge that participates in the
largest number of triangles and schedule the edges of those triangles for a priority in-
stantiation during the search. Fig. 8 illustrates the first steps of the application of the
algorithm starting from edge I. First, the triangles in which edge I participates are ex-
plored. From there, we reapply iteratively the same process to each of the edges ex-
plored, i.e. edges II, III, and IV, gradually covering all the edges in the biconnected
component. The modification of the label of any these edges propagates through these
triangles. Thus, inconsistencies and deadends are likely to be more quickly detected
during search, and backtrack remains locally contained.

We can show that this process stops when all the edges in the biconnected compo-
nent have been visited. Then EdgeOrd restarts from an unvisited edge from the original
graph and repeats the process until all edges of the original network have been visited.
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The function returns a list in which the edges that are in a given biconnected compo-
nent appear in sequence. As a result, this ordering heuristic implicitly enables search to

IV

III

I

II

Fig. 8. Illustrating the exploration of the edges of a graph by the edge ordering heuristic.

examine the biconnected components of the graph in isolation, and thus decompose the
graph automatically. The advantages of this mechanism are:

1. Localized backtracking: Neighboring levels in the search tree are likely to corre-
spond to edges that form a triangle and thus are topologically related. When it en-
counters a deadend, search will backtrack to an edge that is more likely the culprit
than another edge taken randomly from the graph.

2. Automatic decomposition of the graph into its biconnected components: This or-
dering heuristic implicitly guarantees that articulation points in the graph (if any),
are exploited, as if the network was decomposed into its biconnected components
without using the special algorithm necessary for this purpose (see Section 4.1).

We believe, but still need to show, that these features make EdgeOrd a more effective
heuristic than a dynamic variable-ordering heuristic based only on domain size.

5 � Arc-Consistency

When solving a CSP, it is common to run a domain filtering mechanism (such as arc-
consistency, AC) as a preprocessing step to search, and to interleave search with a looka-
head strategy (such as forward-checking, FC [13]). Consistency checking may reduce
the domain of the variables, thus reducing the size of the CSP and the search effort.

The size of the meta-CSP is exponential in the size of the TCSP. If � is the number
of intervals in the label of an edge in the TCSP, � 
�� is the number of edges, and � is the
number of nodes where � 
��/, � � ��� � �
 , the size of the meta-CSP is in � ����� ��� � . Thus
it is important to explore mechanisms to reduce the size of the meta-CSP by removing
‘inconsistent’ intervals from the edge labels. The only constraint in the meta-CSP is
a global constraint that requires all variable-value pairs of the meta-CSP to form a
consistent STP. Thus, for the meta-CSP, AC is the generalized arc-consistency of this
unique constraint, which is NP-hard [22]. In [22], we introduce the concept of � Arc-
Consistency as an approximation of the generalized arc-consistency of the meta-CSP.
We also introduce an efficient algorithm, � AC, that implements � Arc-Consistency.
This algorithm ensures that for every interval

� �
	��� � in the domain of a meta-CSP variable

� ��� � there exist an interval
� �
���� � in the domain of the meta-CSP variable � ��� � and an
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interval
�������� � in the domain of the meta-CSP variable � � � � such that

�	�
	��� � � � �	�
� �� ��� �	��� �� � ����� , where
�

is interval intersection and � is interval composition [5]. We establish
that the complexity of � AC is � �
	���
��
��� �
� ��� � 
���� � � � �
� ��� � 
�� � � � . The value of
� AC lies in the data structures it uses, reminiscent of AC-4 [14] and AC-2001 [1], to
save significantly the number of constraint checks1. We have not yet used � AC in a
lookahead strategy, but plan to do so in the future.

6 Experimental Results

Fig. 9 shows the TCSP solvers we tested, with and without pre-processing by � AC.

AC

AC

STP-TCSP

PPC

DPC

STP

PPC-A-TCSP

PPC-B-TCSP

Triangulation plan

DPC-TCSP

Plan A + EdgeOrd (automatic decomposition) + NewCyc

PPC+AP-B-TCSP

PPC+AP-A-TCSP

Without 

With              or

STP Solver

Preprocessing

Points (AP)
Exploiting Articulation

TCSP Solvers

Cycles (NewCyc)
DPC+AP-TCSP

Checking for New

DPC+AP+NewCyc-TCSP

PPC+AP+NewCyc-A-TCSP

PPC+AP+NewCyc-B-TCSP

Fig. 9. TCSP solvers tested.

The STP solvers we used are DPC, PPC, and � STP all as described in Section 3.
The network is triangulated only prior to PPC and � STP. We combined these STP
solvers with the techniques proposed in Section 4 (i.e., AP, NewCyc, and EdgeOrd).
Since we have not yet implemented a lookahead strategy, all the TCSP solvers tested
use a static variable ordering. By default, and except for � STP-TCSP (where we use
EdgeOrd), it is a lexicographical ordering of the lexicographically sorted tuples naming
the edges by their two endpoints. We compared the performance of the TCSP solvers in
terms of the number of nodes visited NV, constraint checks CC, and CPU time. Since all
CPU time curves have almost exactly the same shapes as the CC curves, they are omitted
to save space but are all available upon request. We carried out our tests on randomly
generated, (guaranteed) connected problems. Our generator, described in [22], guaran-
tees that at least 80% of these problems have at least one solution. The TCSP instances
generated have the following characteristics: � ��� , � randomly chosen between 1
and 5, density of the temporal network ( 	 � � � � � � ���������� � ���
� � � � � ����� �

) varies in [0.02, 0.1] with
a step of 0.02 and in [0.2, 0.9] with a step of 0.1. The number of variables in the meta-
CSP, for which we find all solutions, varies from 7 to 26. The size of the meta-CSP
varies on average between 1.6 ���! � and 5.2 ���! � � . We averaged the results of over 100
samples. The goal of our experiments was to study the effects on the various solvers
of the improvements we proposed 2 (i.e., � STP, AP, NewCyc, EdgeOrd, � AC), and
to establish their effectiveness. An extensive comparison of the the performance of the
various STP solvers can be found in [21].

1 We are investigating an improvement that may establish its optimality.
2 Note that although decomposition according to articulation points is a well-known technique,

to the best of our knowledge, it has not been yet assessed experimentally.
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Section 6.1 discusses the number of solutions of the problems tested. Naturally,
all solvers find the same solutions. Section 6.2 shows the effect of our techniques on
the shape of the tree by measuring the number of nodes visited. Section 6.3 shows the
effect of our techniques on the various TCSP solvers (i.e., DPC, PPC, and � STP) on
the number of constraint checks. In Sections 6.2 and 6.3 we also show how filtering the
meta-CSP with � AC dramatically improves the performance of search. The effect of
this preprocessing is clearly visible in comparisons of the scale of the vertical axis of
the charts without and after preprocessing. While the benefits of this filtering algorithm
are discussed in [22], we confirm here that it is useful in every TCSP solver we tested.

6.1 Solutions to the TCSP

When density is low, there are few constraints, any partial solution is likely to be ex-
tended to a global solution, and there are many solutions to the meta-CSP as is seen
in Fig. 10. Indeed, under low density, the temporal network (which is guaranteed con-

Fig. 10. The number of solutions of the meta-CSP.

nected by construction) has almost no cycles. Thus, almost any combination of intervals
in the label of the edges is a solution to the meta-CSP (see Proposition 1). The num-
ber of solutions quickly drops as density rises. When 	 =0.9, there are only one or two
solutions, one of which is guaranteed by construction.

6.2 Effects on the Size of the Search Tree

The effects of AP and EdgeOrd on the ‘shape’ of the tree can be assessed by the number
of nodes visited NV by search. They are shown in Fig. 11.

Note that the effects of NewCyc on the various STP solvers (i.e., DPC, PPC, and
� STP) are irrelevant to this measurement. Indeed, they aim at reducing the cost of
checking the consistency of the STP at a node in the tree once search has effectively
reached the node. The ‘ � ’ in the legend of Fig. 11 indicates that these results hold for all
STP solvers tested. Fig. 11 shows that AP reduces significantly NV when density is low.
When density is high, almost no articulation point exists, hence AP does not impact NV.
The effect of EdgeOrd is quite dramatic across all values for density because it allows
BT-TCSP to quickly identify dead-ends, as a good ordering heuristic is supposed to do.
Moreover, and thanks to � AC, we start to notice the existence of a phase transition
that appears around 	 �  
 � and becomes increasingly visible as we move toward more
effective TCSP solvers.
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Without AC
After AC

Fig. 11. Nodes visited by BT-TCSP. Left: without preprocessing. Right: after filtering with
�

AC.

6.3 Effects on the Number of Constraints Checks (Same as CPU Time)

Here we discuss the effects of our techniques on the various TCSP solvers: DPC, PPC,
and � STP. We show the benefits of AP and NewCyc on DPC (Fig. 12). We show the
benefits of AP, NewCyc on PPC for both Plan A (Fig. 13) and Plan B (Fig. 14) Finally,
we show the benefits of EdgeOrd and NewCyc under Plan A on � STP (Fig. 15).

Without AC

After AC

Fig. 12. Constraint checks for DPC-TCSP.

Exploiting Articulation Points: For DPC (Fig 12) and PPC (Fig. 13 and 14), AP is again
particularly effective for low density graphs but useless for high density ones.

New Cycle Check: NewCyc dramatically reduces CC across all density values (even
though it has no effect on the number of nodes visited, as stated in Section 6.2).

Triangulation Plans: The triangulation of an STP during search, required for PPC
solver, is carried out according to Plan A (Fig. 13) and Plan B (Fig. 14) of Section 3.2.
By comparing the scale of the vertical axis of these two figures, we conclude that Plan A
is superior to Plan B. This can be explained as follows. Plan A triangulates, before
search, all the networks that will be checked for consistency during search (there are



13

Without AC
After AC

Fig. 13. Constraint checks for PPC-TPCS using Plan A.

Without AC

After AC

Fig. 14. Constraint checks for PPC-TCSP using Plan B.

exactly � 
�� such graphs). Plan B finds the triangulation of an STP at a given node dur-
ing search by inducing a subgraph from the triangulated original STP. Hence, Plan B
triangulates the network only once, while Plan A carries out as many triangulation op-
erations as the number of edges in the network (and levels in the search). However, the
induced subgraphs in Plan B end up much denser than the ones used by Plan A, thus
requiring more effort from PPC, the STP solver. Further, the fact that Plan A yields
no denser graphs than Plan B becomes an even more desirable feature when TCSP is
dense. This explains the significant differences in behavior between Plan A and Plan B
under high density TCSPs.

The Winning Combination: In [21] we compared the performances of F-W, DPC, PPC,
and � STP for solving an STP. We found that DPC, PPC, and � STP consistently out-
perform F-W, the Floyd-Warshall algorithm. Further, � STP consistently outperforms
PPC. Indeed, the former is a finer version of the latter. Importantly, when the density
of the temporal graph is below 0.4, � STP (which guarantees minimality) outperforms
DPC (which does not). For sensibly high densities, we found DPC to be more effective.
Since in the search for solving the meta-CSP we consider subgraphs of the original net-
work, the networks at the different levels of the tree are more likely to be sparse than
dense. This shows that even when the TCSP is dense, � STP is a good choice for the
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Without AC

After AC

Fig. 15. Constraint checks for
�

STP-TCSP.

STP solver. Hence, among the techniques tested, the best combination one could use to
solve a TCSP is the one we called � STP-TCSP (Fig. 9). Indeed � STP outperforms all
TCSP solvers including the one based on DPC (compare Fig. 12 and 15).

7 Conclusions

At the beginning of our investigations, the best mechanism known to date for solving
the meta-CSP3 was one based on DPC. We introduced � STP, enhanced it with NewCyc
and EdgeOrd, and showed empirically that it results in dramatic improvements. Indeed,
in comparison to the original DPC, the best combination of our techniques reduces the
number of constraint checks by a factor of 500 (median) and 40,000 (average) and that
of CPU by a factor of 320 (median) and 1,200 (average).

Further, we showed that our techniques uncover the existence of a phase-transition-
like phenomenon for solving the TCSP as the density of the network varies4. This is
most visible with � STP-TCSP. This observation calls for more detailed investigations
in this direction. As directions for future research, we plan to:

1. Exploit � AC in a lookahead strategy for solving the meta-TCSP. And,
2. Evaluate empirically how to improve BT-TCSP with dynamic bundling [3].

Beyond the TCSP, � STP is directly applicable for solving the disjunctive temporal
problem (DTP) with backtrack search [19, 16, 20], but requires triangulating the STP
incrementally at each node in the tree. We believe that NewCyc is also applicable as
long as the constraint added applies to two points that are not yet constrained in the
current path in the tree. These directions require further investigation and evaluation.

3 Note that we do not include in our comparison algorithms that tighten these intervals in the
labels of the edges. Those may not terminate in the general case and are prohibitively expensive
in the integral case [18].

4 Schwalb and Dechter [18] report a similar phenomenon when varying the number of variables
and the tightness of the constraints.
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