A Partial Taxonomy of
Substitutability and Interchangeability

Shant Karakashian', Robert Woodward!, Berthe Y. Choueiry!, Steven D.
Prestwich? and Eugene C. Freuder?

! Constraint Systems Laboratory, University of Nebraska-Lincoln, USA
{shantk,rwoodwar,choueiry}@cse.unl.edu

2 Cork Constraint Computation Centre, Department of Computer Science, University
College Cork, Ireland {s.prestwich,e.freuder}@4c.ucc.ie

Abstract. Substitutability, interchangeability and related concepts in
Constraint Programming were introduced approximately twenty years
ago and have given rise to considerable subsequent research. We survey
this work, classify, and relate the different concepts, and indicate direc-
tions for future work, in particular with respect to making connections
with research into symmetry breaking. This paper is a condensed version
of a larger work in progress.

1 Introduction

Many important problems in computer science, engineering and management
can be formulated as Constraint Satisfaction Problems (CSPs). A CSP is a
triple (V, D, C) where V is a set of variables, D the set of their domain values,
and C a set of constraints on the variables that specify the permitted or forbid-
den combinations of value assignment to variables. A solution to a CSP is an
assignment of values to all variables such that all constraints are satisfied. CSPs
are usually solved by interleaving backtrack search with some form of constraint
propagation, for example forward checking or arc consistency.

Constraint problems often exhibit symmetries. A great deal of research has
been devoted to symmetry breaking techniques in order to reduce the size of the
search space [Various, 1991 present]. The earliest works on symmetry breaking
include [Glaisher, 1874; Brown et al., 1988]. In this paper we will not survey
the large literature on symmetry breaking, but a recent survey can be found in
[Gent et al., 2006].

Interchangeability, proposed in a seminal paper by Freuder [1991], is one
of the first forms of symmetry identified for CSPs. Importantly, it is also the
first method proposed for detecting symmetry as opposed to having a constraint
programmer manually specify it. Although there has been since then a steady
flow of research papers developing this concept in both theory and practice, it has
been relatively neglected compared to other forms of symmetry. This situation
is surprising: While in its basic form, interchangeability is a special case of value
symmetry, its various extensions (already proposed in the 1991 paper) make

it a more general concept than is sometimes perceived, and anticipate some
subsequent developments in symmetry definition and breaking. The comparison
with the various types and definitions of symmetry [Benhamou, 1994; Cohen et
al., 2006] will be discussed in the longer version of this paper.

The goal of our endeavor is to analyze the research conducted so far on
interchangeability, relate it to symmetry, and identify opportunities for future
research. This paper is a work in progress and a first step towards our goal.
Our survey is partial and far from complete and we welcome the feedback of the
readers and workshop participants.

The advantages of detecting and exploiting interchangeability have been
established on random problems, benchmarks, and real-world applications. In
backtrack search, the advantages are mainly the reduction of the search space
and the search effort !, and the attainment of multiple solutions by bundling. In
local search, interchangeability is used to locally repair partial solutions [Petcu
and Faltings, 2003]. Real-world applications include nurse scheduling [Weil and
Heus, 1998] and resource allocation in hospitals [Choueiry et al., 1995].

This paper is structured as follows. In Section 2, we give the definitions of
the basic interchangeability concepts and relate them to each other. In Section 3,
we discuss forms of conditional interchangeability. In Section 4, we discuss other
forms of interchangeability that have appeared in the literature. In Section 5, we
relate the various forms of interchangeability. Finally, in Section 6, we list topics
that we plan to cover more fully in the expanded version of this paper.

2 Basic Interchangeability Concepts

In this section, we review the various forms of interchangeability originally intro-
duced in [Freuder, 1991]. We also include a few new interchangeability concepts
that directly relate to the original ones. Full interchangeability, the most basic
form of interchangeability, is defined as follows.

Full interchangeability (FI) [Freuder, 1991] A value a for variable v is fully
interchangeable with value b iff every solution in which v = a remains a solution
when b is substituted for a and vice-versa.

If two values are interchangeable then one of them can be removed from the
domain, reducing the size of the problem; alternatively they can be bundled
together in a Cartesian product representation of solutions. Figures 1, 2 and 3
show examples of two values a and b that are FI (see below for definition of 3-I
and NSub). In our figures, a small solid circle denotes a value in the domain of
the variable represented by the outline circle, and edges link consistent tuples.

Notice that FI is defined ‘at the solution level’, which means that in order
to find all FI values for a given variable, one must account for all constraints
and may have to compute all solutions. Thus, FI is a global property. In [1994],
Benhamou defines the equivalent notion of ‘value symmetry in all solutions’ as

! Most importantly, by factoring out no-goods [Choueiry and Davis, 2002].

Fig. 1. FI: a and b are FI Fig.2.NI: ¢ and b are NI. Fig. 3. KI: a and b are 3-1
but not 3-I or NSub. but not NI.

semantic symmetry. Hence, the terms ‘semantic’ and ‘global’ are equivalent. Be-
cause the detection of global forms of interchangeability is likely to be intractable,
Freuder introduced local variants, which account only for the constraints defined
on a variable, that is, the neighborhood of the variable. In [1994], Benhamou calls
such relations syntactic symmetries. Section 2.1 discusses local interchangeabil-
ity. Further, interchangeability is an equivalence relation on the domain of the
variable: interchangeable values are equivalent. Such equivalences may be rare in
practice. To remedy this situation, Freuder proposed various extensions to the
basic concept, which are discussed in Sections 2.2 and 2.3.

In summary, one may think of interchangeability as a core concept character-
ized as a relation between two values either at the solution level (i.e., global or
semantic) or in the neighborhood of the variable (i.e., local or syntactic). Also,
the concepts may require that interchangeable values be equivalent (i.e., strong),
or not ‘perfectly’ so (i.e., weak or approximate).

When comparing two forms of interchangeability X and Y, we say that X —
Y iff any two values a and b that are related by X are also related by Y but the
converse does not necessarily hold?, regardless of whether Y is derived from X
by relaxing the conditions of X (i.e., Y is weaker than X) or by ‘moving’ from
the local level to the global level (i.e., syntactic to semantic). Note that when
X — Y, Y leads to greater problem reduction than X.

2.1 Local forms of interchangeability

In general, the identification of a local interchangeability is tractable because
it focuses on the neighborhood of the variable. Also, a given local form inter-
changeability usually implies the corresponding global one.

Neighborhood interchangeability (INI) [Freuder, 1991] A value a for vari-
able v is neighborhood interchangeable with value b iff for every constraint on
v, the values compatible with v = a are exactly those compatible with v = b.
Values a and b are NI in Figure 2 but not in Figures 1 or 3.

Neighborhood interchangeable values for a given variable can be detected by
comparing the values in the variable’s domain for consistency to all variable-
value pairs in the variable’s neighborhood and drawing a discrimination tree

2 @ and b are two values or two partial assignments over the same variables.

[Freuder, 1991]. At the end of the process, the leaves of the discrimination tree
are annotated with the equivalence NI values for the variable. The complexity of
this process is O(n2d?), where n is the number of variables and d is the maximum
domain size. Alternatively, one can build a refutation tree, which proceeds by
splitting the domain of the variable [Likitvivatanavong and Yap, 2008]. The
lower bound of the worst-case complexity of the refutation tree is smaller than
that of the discrimination tree. However, it is not clear whether the difference is
meaningful in practice. Further, the discrimination tree can be directly used to
implement forward checking at no additional cost [Beckwith et al., 2001], but it
is not clear yet whether or not the same can be done with the refutation tree.

For non-binary constraints, neighborhood interchangeable values can be de-
tected by constructing non-binary discrimination trees for each variable [Lal et
al., 2005). As described in [Lal et al., 2005], the process also allows the use of
forward checking during search. The complexity to build a non-binary discrimi-
nation tree for a single variable is O(n dega***(1 —t)), where n is the number of
variables, deg is the maximum degree of a variable, a is the maximum domain
size, and t is the tightness of the constraints, defined as the ratio of the number
of forbidden tuples over the number of all possible tuples.

K-interchangeability (KI) [Freuder, 1991] For k > 2, two values, a and b for
a CSP variable X, are k-interchangeable iff a and b are fully interchangeable in
any subproblem of the CSP induced by X and (k — 1) other variables. Values a
and b are 3-I in Figures 2 and 3 but not in Figure 1.

K-interchangeable values can be identified by a modification of the discrimination-
tree algorithm for NI. The complexity of the process is O(n*d*) [Freuder, 1991].

Theorem 1. NI — KI — FI, see [Freuder, 1991].

For 2 < i < j < |V|, i-interchangeability is a sufficient but not necessary condi-

tion for j-interchangeability. NI is 2-interchangeability and FI is |V |-interchangeability.
Hence, NI — KI — FI. @ and b in Figure 1 are FI but not 3-1, and in Figure 3
they are 3-I but not NI.

2.2 Extended interchangeability: Weak forms

Below, we discuss three weak forms of interchangeability introduced in [Freuder,
1991] (i.e., subproblem interchangeability, partial interchangeability, and substi-
tutability) and a number of other related concepts.

Subproblem interchangeability (SPrl) [Freuder, 1991] Two values are sub-
problem interchangeable, with respect to a subset of variables S, iff they are
fully interchangeable with regards to the solutions of the subproblem of the CSP
induced by S.

Partial interchangeability (PI) [Freuder, 1991] Two values are partially in-
terchangeable with respect to a subset S of variables, iff any solution involving
one implies a solution involving the other with possibly different values for vari-
ables in S. In Figure 4, a and b are PI wrt S, shown with the dotted line.

Theorem 2. FI — PI.

If a and b are FI, they are by definition PI with respect to any subset of V. In
Figure 4, a and b are PI wrt to the subset S but not FI.

Fig.4. PL: a and b are PI Fig.5. PI: a and b are PI Fig.6. SPrl: a and b are
wrt S but not Sub, FI, wrt S but not Sub or SPrI SPrl wrt S but not PI wrt
CtxDepl, NTI, or NPI wrt wrt any subset of vari- any subset of variables.
any subset. ables.

Theorem 3. SPrl and PI are not comparable3.

In Figure 5, a and b are PI but not SPrl. In Figure 6, a and b are SPrI but not
PIL

Substitutability (Sub) [Freuder, 1991] For two values a and b for variable v,
a is substitutable for b iff every solution in which v = b remains a solution when
b is replaced by a but not necessarily vice-versa. Figure 7 shows an example.

Note that the concept of substitutability is related to that of dominance [Bel-
licha et al., 1994], which is used in the literature on symmetry breaking.

Theorem 4. FI — Sub.

If a and b are FI, they are by definition mutually substitutable. In Figure 7, a
is substitutable for b, but a and b are not FI.

Again, because substitutable values are expensive to compute, neighborhood
substitutability (NSub) (with the obvious definition) is computationally advan-
tageous. In Figure 8, a is NSub for b. In [1994], Bellicha et al. propose NS-
CLOSURE, an algorithm to enforce NSub. It removes all of the neighborhood
substitutable values from the network. It operates by examining every pair of
values (a,b) in a variable’s domain, trying to find a splitter for the pair. A split-
ter for (a,b) is a value in the neighborhood of the variable that supports a but
not b. If (a,b) does not have a splitter, then a can be removed from the domain.
The time complexity of the algorithm is O(md?), where m is the number of
constraints and d is the maximum domain size. The space complexity of storing
the splitters is O(nd?), where n is the number of variables.

Theorem 5. NI — NSub — Sub; FI and NSub are not comparable.

3 This theorem corrects Theorem 5 of [Freuder, 1991].

i1} Global
O Local
— Implication

Fig. 7. Sub: a is Sub, but not Fig. 8. ais NSub for b but Fig.9. Tllustrating
NSub, for b; a and b are not FI. a and b are not NI or FI. ~ Theorems 1, 4, and 5.

Figure 9 illustrates this situation. First consider NI — NSub. Any NI values are
mutually NSub by definition. In Figure 8, a is NSub for b but a and b are not
NI. Now, consider NSub — Sub. Given two values a and b for a variable, a is
NSub for b, the set of variable-value pairs supporting b is a subset of the one
supporting a. By moving to global substitutability, the sets of supports will only
lose elements, however, the set of support of b will remain a subset of that of a.
Figure 7 shows an example where a is Sub, but not NSub, for b. In Figure 1, a
and b are FI but not NSub. In Figure 8, a is NSub for b but a, and b are not FIL.

Neighborhood Partial Interchangeability (NPI) [Choueiry and Noubir,
1998] Two values b and ¢ for a variable v are NPI given a boundary of change
S (which includes v) iff, for every constraint C' defined on the variables (v,w)
where v € S, w ¢ S, we have: {j|(b, j) satisfies C} = {j|(c, j) satisfies C'}.

The NPT sets of a variable’s domain can be detected by modifying the discrim-
ination tree algorithm of NI to a joint discrimination tree (JDT) by considering
the neighborhood of a set of variables instead of the neighborhood of a single
variable as done in the discrimination tree [Choueiry and Noubir, 1998]. The
complexity of the algorithm to build a JDT for a single variable is O(s(n — s)d?)
and the space complexity for the tree is O((n — s)d), where n is the number of
variables, s is the size of the given set, and d is the size of the domain.

Theorem 6. NPI and PI are not comparable.*
In Figure 4, a and b are PI but not NPI. In Figure 11, they are NPI but not PI.
Theorem 7. NPI — SPrl.

If a and b are NPI outside the boundary of change S, then they are NI in the
subproblem induced by V' \ S. If they are NI in the subproblem, then they are
also FI, and therefore SPrI in the subproblem induced by V'\ S. Figure 10 shows
an example where the converse does not hold.

Directional Interchangeability (Dirl) [Naanaa, 2007a] Two values a and b
in the domain of a variable X are Dirl with respect to a variable ordering of the
variables iff they have the same preceding support set: {c | (a,¢) € Cxy and
Y <X}={c|(bc)eCxyandV < X} .

4 This theorem corrects [Choueiry and Noubir, 1998], which states that NPI implies
PI. This error was mentioned in [Neagu and Faltings, 2005].

Fig. 10. SPrl: a and b are SPrl wrt S Fig.11. NPI: @ and b are NPI wrt S but
but not NPI wrt to any subset or Sub. not PI wrt to any subset, SUB, FI or NTI.

Theorem 8. NPI = Dirl.

If a and b for a variable X are NPI wrt a boundary of change S, then they are
Dirl wrt any variable ordering such that VY € §, X < Y.

Directional Substitutability (DirSub) [Naanaa, 2007b; 2009] Value a is
DirSub for value b for a variable X with respect to a variable ordering of the vari-
ables iff the preceding support set of b is a subset of that of b: {¢ | (b,c) € Cxy
andY < X} C{c| (a,c) e Cxy and Y < X }.

Theorem 9. Dirl — DirSub.

If @ and b of variable X are Dirl wrt a given variable ordering, then, by definition,
the preceding support sets for a and b are the same and consequently subsets of
one another.

Neighborhood Interchangeability Relative to a Constraint (NI¢) [Haselbock,
1993] Two values are NI relative to a constraint C' iff they are NI in the problem
induced by the variables in the scope of C.

NIg values for variable v can be detected by restricting the discrimination
tree to the considered constraint. As a result, the time complexity of finding all
NI¢ sets is O(eka®), where e is the number of constraints, k is the maximum
arity, and a is the maximum domain size. In [1993], Haselbock modified the
usual REVISE procedure for lookahead to exploit the (statically computed) NI¢
sets during search, yielding a solution bundle. The time complexity of the new
REVISE procedure is thus reduced to O(a’2), where 1 < o’ < a. In [Beckwith et
al., 2001], it was shown that the resulting bundles are never ‘thinner’ than those
obtained in [Benson and Freuder, 1992], and never ‘fatter’ than those obtained
by those obtained in [Hubbe and Freuder, 1992], which in turn are equivalent to
those obtained by [Beckwith et al., 2001].

Neighborhood Substitutability Relative to a Constraint (NSub¢) [Bousse-
mart et al., 2004] Two values are NSub¢ relative to a constraint C iff they are
NSub in the problem induced by the variables in the scope of C.

Theorem 10. NPI — NIz — NS¢.

First consider NPI — Nl¢. If for variable X, a and b are NPI, then for every
constraint C' between X and a variable outside of the boundary of change, a and
b are NlIg. NI — NS¢ follows directly from the definition.

2.3 Other extended forms of interchangeability

Other extended forms that were initially proposed are: meta-interchangeability,
dynamic interchangeability, and functional interchangeability.

Meta-interchangeability (MI) [Freuder, 1991] By grouping variables into
‘meta-variables’, or values into ‘meta-values’, we can introduce interchangeability
into higher level ‘meta-problem’ representations of the original CSP.

Values may become interchangeable or substitutable during backtrack search
after some variables have been instantiated, so even a problem with no inter-
changeable values may exhibit interchangeability under some search strategy.

Dynamic Neighborhood Interchangeability (DynNI)® [Beckwith and Choueiry,
2001] Two values a and b for variable X are DynNI with respect to a set A of
variable assignments iff they are NI in the subproblem induced by AU {X} .

Theorem 11. NI — DynNI.

Consider values a and b for a variable v that are NI, assume a and b are not
DynNI. Then, for an assignment for the subset of variables S, either a and b
are not NI in the problem induced by V \ S, or one of a or b is deleted. The
former case is impossible because a and b have the same set of supports in the
original problem, and thus must have the same supports after the assignments.
The latter case is also impossible because a and b having the same support sets,
if a loses all its supports in a neighboring variable, then b also loses all supports
because the support sets are the same.

Full Dynamic Interchangeability (FDynlI) [Prestwich, 2004a] A value a for
variable v is dynamically interchangeable for b with respect to a set A of variable
assignments iff they are fully interchangeable in the subproblem induced by A.

Theorem 12. DynNI — FDynl.

If @ and b are DynNI, then a and b are consistent with the same set of values
in the assignment A. They are also NI relative to the variables in the problem
induced by A that are not yet assigned and, consequently, are FI.

Functional interchangeability [Freuder, 1991] Let Sa|x be the set of solutions
including value a for variable X. Two values a for X and b for Y are functionally
interchangeable iff there exists functions f and f’ such that f(S,x) = Syy and
f(Spy) = Sajx-

Two values a and b for a variable are isomorphically interchangeable [Freuder,
1991] iff there exists a 1-1 function f such that b = f(a) and for any solution
S involving a, {f(v) | v € S} is a solution. Also for any solution S involving b,
{f~(v) | v € S} is a solution.

In the longer version of this paper, we compare functional and isomorphic
interchangeability with the definitions of symmetry introduced in [Benhamou,
1994; Cohen et al., 2006].

® Dynamic Interchangeability (Dynl) property was incorrectly characterized as Dy-
namic Neighborhood Partial Interchangeability (DNPI) in [Beckwith and Choueiry,
2001; Choueiry and Davis, 2002; Lal and Choueiry, 2004; Lal et al., 2005].

3 Conditional Forms of Interchangeability

Conditions can be added to a CSP in the form of constraints that further con-
strain the problem. In problems with little interchangeability, such conditions
can be imposed to increase the interchangeability among the variable values.
In [2004], Zhang and Freuder introduced and studied conditional interchange-
ability, conditional substitutability, conditional neighborhood interchangeability
and conditional neighborhood substitutability.

Conditional Interchangeability (Conl) [Zhang and Freuder, 2004] Two val-
ues a and b of variable v are Conl under a condition imposed by a set of additional
constraints iff they are FI in the problem with the additional constraints.

Similarly Conditional Neighborhood Interchangeability (ConNT), Conditional
Substitutability (ConSub), and Conditional Neighborhood Substitutability (ConNSub)
are defined by [Zhang and Freuder, 2004] where a problem is NI, Sub and NSub
respectively given a set of conditions.

Theorem 13. (ConNI — Conl — ConSub), (ConNI — ConNSub — ConSub),
and Conl and ConNSub are not comparable.

For ConNI — Conl and ConNSub — ConSub, see [Zhang and Freuder, 2004].
Consider the local forms: ConNI — ConNSub. For the same set of additional
constraints, if @ and b are ConNI in the original problem, they are NI in the
problem with the additional constraints. Hence, they are also NSub in the prob-
lem with the additional constraints, and ConNSub in the original problem. The
proof for the global forms (i.e., Conl — ConSub) is similar. Similar to the non-
comparability of FI and NSub (see Theorem 5), Conl and ConNSub can be
shown to be not comparable.

4 Other Forms of Interchangeability

In this section we review other forms of interchangeability that have appeared
in the literature.

Neighborhood Tuple Interchangeability (NTI) [Neagu and Faltings, 1999].
Values a and b for variable v are NTI with respect to a set of variables S if for
every consistent tuple ¢ of value assignments to S U {v} where = a there is
another consistent tuple ¢ where v = b such that ¢ and ' are consistent with
the same value combinations for variables outside of S. Additionally, the same
condition must hold when a and b are exchanged. Figure 12 shows an example.

The algorithm proposed in [Neagu and Faltings, 2005] to detect NTI val-
ues determines the smallest set S using discrimination trees. The complexity of
detecting NTT values is O((n*me* s,00(n — Smaz)d?), where n is the number of
variables, d is the maximum domain size, and $,,4, is the maximum size of all
possible dependent sets in the neighborhood of the variable.

Theorem 14. NI — NTI — PI and NTI — NPI.

First, consider NI — NTI. Given values a and b that are NI for a variable, for
every consistent tuple ¢ with a there is a tuple ¢’ that only differs from ¢ with a
replaced with b. Hence ¢ and ¢’ are consistent with the same value combinations.
Figure 12 gives an example where the converse does not hold. For (NTI — PI)
and (NTI — NPI), see [Neagu and Faltings, 2005]. Figure 4 gives an example
where PI /4 NTI, and Figure 11 gives an example where NPI -4 NTI.

In [2005], Wilson described a new approach to computation in a semiring-
based system based on semiring-labeled decision diagrams (SLDDs). He defines
forward neighborhood interchangeability (ForwNI) and uses it for merging nodes
in SLDDs, hence compacting the search space. During search, ForwNI takes into
account constraints that apply to instantiated and uninstantiated variables.

Forward Neighborhood Interchangeability (ForwNI) [Wilson, 2005] Given
a subset of variables U C V, two assignments u and u’ to a set of variables U are
said to be ForwNI if for all constraints ¢ € C such that scope(c) N (V\U) # 0
and scope(c) NU # 0, In\y{t € c|IIy(t) = u} = ITy\y{t € c| y(t) = u'}.

Theorem 15. NTI — ForwNI.

If @ and b for variable X are NTI with respect to set of variables S, then for
every assignment ¢ to S U {X} where X = a there is another consistent tuple ¢’
where X = b such that ¢ and ¢’ are consistent with the same value combinations
for variables outside of S. Hence, the set of tuples consistent with ¢ is the same
for ¢’ when projected on V'\ S. Therefore, the assignments I7s(t) and IIg(t') are
ForwNI.

Tuple substitutability is a global form of ForwNTI:

Tuple Substitutability (TupSub) [Jeavons et al., 1994] Two assignments A
and B to a set of variables R are TupSub iff Iy r(0p(Sol)) C IIy\r(ca(Sol)),
where Sol is the set of all solutions to the problem.

Theorem 16. ForwNI — TupSub.

If two assignments w and u’ are ForwNI, then for every solution in which u
participates, u can be substituted with u’ because they have the same supports
in every constraint that links the scope of u to the rest of the problem. Therefore,
the assignments u and v’ are interchangeable and consequently substitutable.

Theorem 17. DynNI — ForwNI.

If @ and b for variable X is DynNI wrt a set A of assignments, then any two
assignments u and v’ in AU {X}, such that I[Ix(u) = a and IIx(u’) = b, have
the same set of support tuples because a and b are NI in V'\ A. Therefore, u and
u’ are ForwNI.

Full Dynamic Substitutability (FDynSub) [Prestwich, 2004b] A value a for
variable v is dynamically substitutable with value b with respect to a set A of

variable assignments iff a is fully substitutable for b in the subproblem induced
by A.

Theorem 18. FDynl — FDynSub, follows directly from the definition.

Theorem 19. Sub — FDynSub.

Consider value a Sub for b for variable v, the set of values supporting b is a subset
of the set of values supporting a. Given an assignment of variables in FDynSub,
the sets of supports will only lose elements, hence set of values supporting b will
remain a subset of the set of values supporting a.

Theorem 20. FDynSub — ConNSub.

If @ and b are FDynSub, then a set of constraints can be constructed for the
original problem that removes all but the assigned values in the variables that
are assigned in FDynSub. In the new problem resulting from adding those con-
straints, a and b are Sub. Moreover, a and b are NSub because all the values in
the neighborhood that are not part of a solution are eliminated by the added
constraints.

Theorem 21. TupSub and FDynSub are not comparable.

Context dependent interchangeability (CtxDepl) [Weigel et al., 1996]
Values a and b for a CSP variable X are CtxDepl, iff there exists a solution
clique in the modified microstructure of the CSP that contain both nodes (X, a)
and (X,b). The modified microstructure of the CSP is the original microstruc-
ture with edges added between values of the same variable. Figure 13 shows an
example.

Fig.12. NTIL: o and b are Fig.13. CtxDepl: a and b Fig.14. GNSub: a and
NTI but not FDynNSub. are CtxDepl (clique {a,b,d,e}) b are GNSub but not
but not Sub, FI, or PI. Sub.

Theorem 22. CtxDepl = FDynl.

Connecting two CtxDepl values a and b for a CSP variable in the micro-structure
of the CSP yields a solution clique with a and b. By assigning the values in the
clique to the variables, we obtain an assignment set A where a and b are fully
interchangeable in the subproblem induced by A. Conversely, if a and b are
FDynl with respect to an assignment set A, then there is a solution clique in
the modified micro-structure with a, b and all the values in A.

Theorem 23. FI — CtxDepl, FDynl.

If @ and b are FI for a variable v, then a solution with v = a yields another
solution when replacing a with b. Thus, by connecting a and b in the micro-
structure, we obtain a solution clique with a and b. Figure 13 shows an example
where the converse does not hold.

Generalized Neighborhood Substitutability (GNSub) [Chmeiss and Sais,
2003] Two values of a variable are GNSub iff they share at least one support
with respect to each neighboring variable. Figure 14 shows an example.

Theorem 24. NSub and GNSub are not comparable.

Figures 14 and 15 show counter examples.
Theorem 25. CtxDepl — GNSub

If @ and b are CtxDepl, then the variable-value pairs connected to a in the micro-
structure of the CSP are also connected to b. Thus, a and b share at least one
support and are GNSub. Figure 16 shows an example where the converse does
not hold.®

Theorem 26. GNSub — ConNI.

If @ and b are GNSub for a variable, then we can construct a set of constraints
that eliminates all values in the neighboring variables except the ones that are
the shared support between a and b in order to make a and b ConNI. In Figure 17,
the constraints that eliminate the supports of a make a and b ConNI.

/

Fig.15. NSub: a and b are Fig.16. GNSub: a and b Fig.17. ConNI: a and b
NSub but not ConNI or are GNSub butnot FDynl are ConNI but not GN-
GNSub. or CtxDepl. Sub.

5 Relationships Between Interchangeability Concepts

The different interchangeability concepts surveyed in the previous sections are
related here by the implication relation. Given two interchangeability concepts
A and B, A — B if every interchangeable pair defined by A, is also defined by B.
Hence, B generalizes A. Figures 18 and 19 illustrate those implication relations,
and depict a partial ordering because some concepts are not comparable.

5 Section 6.2 of [Zhang and Freuder, 2004] incorrectly states that CtxDepl and Conl
are equivalent.

ConSub "7 77| Satisfiability preserving

\V/

Fig. 18. Hasse Diagram of main interchangeability properties.

\ —> Implication
ConNSub Conl
ConNI
A

GNSub
'FDynSub PI TupSub ' NSubc
I
. Sub CtxDepl, ForwNI - NIC Sprl DirSub
. FDan :
H |
! : f /
' NP
! : Dirl
I I
: :
' NSub KI DynNI H
' i
I I
H I

An interchangeability concept is satisfiability preserving iff when given two
values a and b that are either interchangeable or a is substitutable for b, removing
b from the problem does not alter the satisfiability of the problem. Not all inter-
changeability concepts are satisfiability preserving. Only the interchangeability
concepts that are inside the dashed rectangle are satisfiability preserving.

In Figure 19, The upper horizontal plane groups concepts defined at the
semantic level and thus are likely intractable. The lower horizontal plane groups
concepts defined at the syntactic levels (i.e., directly on the constraints), and
can likely be efficiently computed.

Interestingly, for a given form of interchangeability, when one moves vertically
upward from the lower plane to the higher plane, interchangeability sets do
not decrease in size while the interchangeability form is not approximated or
compromised. Naturally, this advantage is not free because the computational
cost does not decrease. Moving along the directed edges in either horizontal
planes does not increase cost or the opportunities for interchangeability (i.e.,
size of interchangeability sets), but results in an approximation (i.e., weakening)
of the ‘quality’ of the interchangeability. Finally, moving from the higher plane
to the lower one allows one to likely avoid intractability and may increase the
interchangeability opportunities but also results in approximations that may lose
solutions.

FDynSub] (Conl }—{ ConSub)

CtxDepl = FDynl

‘[Pl || TupSub
SPrl

((GNsub }—{_ConNI }~{ ConNSub]

= Dir N
local

Fig. 19. Depicting qualitative relations between main interchangeability properties.

6 Work in Progress

In this paper we surveyed several forms of interchangeability, presented their
definitions, and analyzed their relationship. This document is a work in progress.
In the expanded version, we will address in depth the following topics:

More about interchangeability: concepts not mentioned here; missing proofs
of incomparability; the satisfiability-preserving property; restrictions to con-
straint types; algorithms for interchangeability and their complexity; exper-
imental results.

Beyond classical CSPs: soft constraints [Cooper, 2003; Bistarelli et al., 2003;
Neagu et al., 2003; Neagu and Faltings, 2003]; distributed CSPs [Petcu and
Faltings, 2003; Burke and Brown, 2006; Ezzahir et al., 2007].

Relation to symmetry: various types [Benhamou, 1994; Cohen et al., 2006];
symmetry breaking during search (SBDS) [Roney-Dougal et al., 2004; Back-
ofen and Will, 2002; Gent and Smith, 2000], symmetry breaking by domi-
nance detection (SBDD) [Fahle et al., 2001; Focacci and Milano, 2001], and
symmetry breaking by enforcing variable or domain ordering [Bellicha et al.,
1994; Yip and Hentenryck, 2009]; restricted classes of symmetries and prob-
lems where the symmetry is broken in polynomial time [Hentenryck et al.,
2003; Benhamou, 2004].

Relation to search-space compaction: asin CPR [Hubbe and Freuder, 1992],
AND/OR graphs [Dechter and Mateescu, 2004], SLDD [Wilson, 2005, and
solution robustness [Ginsberg et al., 1998; Hebrard et al., 2004].

Relation to SAT solving.

Acknowledgments

This work was supported in part by Science Foundation Ireland under Grant
00/P1.1/C075. Karakashian and Woodward gratefully acknowledge the support

and hospitality of the Cork Constraint Computation Centre during Summer 2010
when this research was conducted.

References

[Backofen and Will, 2002] Rolf Backofen and Sebastian Will. Excluding Symmetries
in Constraint-Based Search. Constraints, 7(3/4):333-349, 2002.

[Beckwith and Choueiry, 2001] Amy M. Beckwith and Berthe Y. Choueiry. On the
Dynamic Detection of Interchangeability in Finite Constraint Satisfaction Problems.
In Principle and Practice of Constraint Programming (CP 01), volume 2239 of LNCS,
page 760, Paphos, Cyprus, 2001.

[Beckwith et al., 2001] Amy M. Beckwith, Berthe Y. Choueiry, and Hui Zou. How the
Level of Interchangeability Embedded in a Finite Constraint Satisfaction Problem
Affects the Performance of Search. In AT 2001: 14th Australian Joint Conference on
Artificial Intelligence, volume 2256 of LNAI, pages 50—61, 2001.

[Bellicha et al., 1994] Amit Bellicha, Christian Capelle, Michel Habib, Tibor Kokény,
and Marie-Christine Vilarem. CSP Techniques Using Partial Orders On Domain
Values. In ECAI 1994 Workshop on Constraint Satisfaction Issues Raised by Practical
Applications, 1994.

[Benhamou, 1994] Belaid Benhamou. Study of Symmetry in Constraint Satisfaction
Problems. In Second Workshop on Principles and Practice of Constraint Program-
ming (PPCP 94), pages 246-254, 1994.

[Benhamou, 2004] Belaid Benhamou. Symmetry in Not-Equals Binary Constraint Net-
works. In Fourth International Workshop on Symmetry in Constraint Satisfaction
Problems (SymCon 04), pages 2-8, 2004.

[Benson and Freuder, 1992] Brent W. Benson and Eugene C. Freuder. Interchange-
ability Preprocessing Can Improve Forward Checking Search. In Tenth European
Conference on Artificial Intelligence (ECAI 92), pages 28-30, 1992.

[Bistarelli et al., 2003] Stefano Bistarelli, Boi Faltings, and Nicoleta Neagu. Inter-
changeability in Soft CSPs. In Recent Advances in Constraints, volume 2627 of
LNCS, pages 45-68. Springer, 2003.

[Boussemart et al., 2004] Frederic Boussemart, Fred Hemery, Christophe Lecoutre,
and Lakhdar Sais. Support Inference for Generic Filtering. In Principles and Practice
of Constraint Programming (CP 04), volume 3258 of LNCS, pages 721-725. Springer,
2004.

[Brown et al., 1988] Cynthia A. Brown, Larry Finkelstein, and Paul W. Purdom, Jr.
Backtrack Searching in the Presence of Symmetry. In Applied Algebra, Algebraic Al-
gorithms and Error-Correcting Codes, volume 357 of LNCS, pages 99-110. Springer,
1988.

[Burke and Brown, 2006] David A. Burke and Kenneth N. Brown. Applying Inter-
changeability to Complex Local Problems in Distributed Constraint Reasoning. In
Workshop on Distributed Constraint Reasoning (AAMAS 06), pages 1-15, 2006.

[Chmeiss and Sais, 2003] Assef Chmeiss and Lakhdar Sais. About Neighborhood Sub-
stitutability In CSPs. In Third International Workshop on Symmetry in Constraint
Satisfaction Problems (SymCon 03), pages 41-45, 2003.

[Choueiry and Davis, 2002] Berthe Y. Choueiry and Amy M. Davis. Dynamic
Bundling: Less Effort for More Solutions. In International Symposium on Abstrac-
tion, Reformulation and Approzimation (SARA 02), volume 2371 of LNAI, pages
64-82. Springer, 2002.

[Choueiry and Noubir, 1998] Berthe Y. Choueiry and Guevara Noubir. On the Com-
putation of Local Interchangeability in Discrete Constraint Satisfaction Problems. In
Fifteenth National Conference on Artificial Intelligence (AAAI 98), pages 326-333,
1998.

[Choueiry et al., 1995] Berthe Y. Choueiry, Boi Faltings, and Rainer Weigel. Abstrac-
tion by Interchangeability in Resource Allocation. In 14" International Joint Con-
ference on Artificial Intelligence (IJCAI 95), pages 1694-1701, 1995.

[Cohen et al., 2006] David Cohen, Peter Jeavons, Christopher Jefferson, Karen E.
Petrie, and Barbara M. Smith. Symmetry Definitions for Constraint Satisfaction
Problems. Constraints, 11(2):115-137, 2006.

[Cooper, 2003] Martin C. Cooper. Reduction Operations in Fuzzy or Valued Con-
straint Satisfaction. Fuzzy Sets and Systems, 134(3):311-342, 2003.

[Dechter and Mateescu, 2004] Rina Dechter and Robert Mateescu. The Impact of
AND/OR Search Spaces on Constraint Satisfaction and Counting. In Principles and
Practice of Constraint Programming (CP 04), volume 3258 of LNCS, pages 731-736,
2004.

[Ezzahir et al., 2007] Redouane Ezzahir, Mustapha Belaissaoui, Christian Bessiere,
and El Houssine Bouyakhf. Compilation Formulation for Asynchronous Backtracking
with Complex Local Problems. In Third International Symposium on Computational
Intelligence and Intelligent Informatics (ISCIII 07), pages 205-211, 28-30 2007.

[Fahle et al., 2001] Torsten Fahle, Stefan Schamberger, and Meinolf Sellman. Sym-
metry Breaking. In Principles and Practices of Constraint Programming (CP 01),
volume 2239 of LNCS, pages 93—107. Springer, 2001.

[Focacci and Milano, 2001] Filippo Focacci and Michela Milano. Global Cut Frame-
work for Removing Symmetries. In Seventh International Conference on Principles
and Practice of Constraint Programming (CP 01), volume 2239 of LNCS, pages 77—
92. Springer, 2001.

[Freuder, 1991] Eugene C. Freuder. Eliminating Interchangeable Values in Constraint
Satisfaction Problems. In National Conference on Artificial Intelligence (AAAI 91),
pages 227-233, 1991.

[Gent and Smith, 2000] Ian P. Gent and Barbara M. Smith. Symmetry Breaking in
Constraint Programming. In Fourteenth European Conference on Artificial Intelli-
gence (ECAI 00), pages 599-603. IOS Press, 2000.

[Gent et al., 2006] Ian Gent, Karen Petrie, and Jean-Frangois Puget. Handbook of
Constraint Programming, chapter 10, pages 329-376. Elsevier, 2006.

[Ginsberg et al., 1998] Matthew L. Ginsberg, Andrew J. Parkes, and Amitabha Roy.
Supermodels and Robustness. In Fifteenth National Conference on Artificial intelli-
gence (AAAI 98), pages 334-339, 1998.

[Glaisher, 1874] J.W.L. Glaisher. On the Problem of the Eight Queens. Philosophical
Magazine, series 4, 48:457-467, 1874.

[Haselbock, 1993] Alois Haselbock. Exploiting Interchangeabilities in Constraint Sat-
isfaction Problems. In 18" International Joint Conference on Artificial Intelligence
(IJCAI 93), pages 282-287, 1993.

[Hebrard et al., 2004] Emmanuel Hebrard, Brahim Hnich, and Toby Walsh. Super
Solutions in Constraint Programming. In Integration of AI and OR Techniques in
Constraint Programming for Combinatorial Optimization Problems (CPAIOR 04),
volume 3011 of LNCS, pages 157-172. Springer, 2004.

[Hentenryck et al., 2003] Pascal Van Hentenryck, Pierre Flener, Justin Pearson, and
Magnus Agren. Tractable Symmetry Breaking for CSPs with Interchangeable Values.
In 18" International Joint Conference on Artificial Intelligence (IJCAI 03), pages
277-282, 2003.

[Hubbe and Freuder, 1992] Paul D. Hubbe and Eugene C. Freuder. An Efficient Cross
Product Representation of the Constraint Satisfaction Problem Search Space. In
Tenth National Conference on Artificial Intelligence (AAAI 92), pages 421-427, 1992.

[Jeavons et al., 1994] Peter G. Jeavons, David A. Cohen, , and Martin C. Cooper.
A Substitution Operation for Constraints. In Second Workshop on Principles and
Practice of Constraint Programming (PPCP 94), volume 874 of LNCS, pages 18-25.
Springer, 1994.

[Lal and Choueiry, 2004] Anagh Lal and Berthe Y. Choueiry. Constraint Processing
Techniques for Improving Join Computation: A Proof of Concept. In Proceedings of
the 1°% International Symposium on Constraint Databases, CDB’04, volume 3074 of
LNCS, pages 149-167. Springer, 2004.

[Lal et al., 2005] Anagh Lal, Berthe Y. Choueiry, and Eugene C. Freuder. Neighbor-
hood Interchangeability and Dynamic Bundling for Non-Binary Finite CSPs. In 20"
National Conference on Artificial Intelligence (AAAI 05), pages 397-404, 2005.

[Likitvivatanavong and Yap, 2008] Chavalit Likitvivatanavong and Roland H.C. Yap.
A Refutation Approach to Neighborhood Interchangeability in CSPs. In AI 2008:
Advances in Artificial Intelligence, volume 5360 of LNCS, pages 93-103. Springer,
2008.

[Naanaa, 2007a] Wady Naanaa. Directional Interchangeability for Enhancing CSP
Solving. In Integration of AI and OR Techniques in Constraint Programming for
Combinatorial Optimization Problems (CPAIOR 07), volume 4510 of LNCS, pages
200-213, 2007.

[Naanaa, 2007b] Wady Naanaa. Substitutability Based Domain Decomposition for
Constraint Satisfaction. In 7" International Workshop on Symmetry and Constraint
Satisfaction Problems (SymCon 07), pages 64-71, 2007.

[Naanaa, 2009] Wady Naanaa. A Domain Decomposition Algorithm for Constraint
Satisfaction. Journal of Experimental Algorithmics (JEA), 13(1.13):1-23, 2009.

[Neagu and Faltings, 1999] Nicoleta Neagu and Boi Faltings. Constraint Satisfaction
For Case Adaptation. In Workshop on Formalisation of Adaptation in Case-Based
Reasoning of ICCBR 99, pages 35-41, 1999.

[Neagu and Faltings, 2003] Nicoleta Neagu and Boi Faltings. Soft Interchangeability
for Case Adaptation. Case-Based Reasoning Research and Development, 2689:1066—
1066, 2003.

[Neagu and Faltings, 2005] Nicoleta Neagu and Boi Faltings. Approximating Par-
tial Interchangeability In CSP Solutions. In International FLAIRS Conference
(FLAIRS 05), pages 175-181, 2005.

[Neagu et al., 2003] Nicoleta Neagu, Stefano Bistarelli, and Boi Faltings. On the Com-
putation of Local Interchangeability in Soft Constraint Satisfaction Problems. In
International FLAIRS Conference (FLAIRS 03), pages 14-18, 2003.

[Petcu and Faltings, 2003] Adrian Petcu and Boi Faltings. Applying Interchangeabil-
ity Techniques to the Distributed Breakout Algorithm. In Principles and Practice of
Constraint Programming (CP 03), volume 2833 of LNCS, pages 925-929. Springer,
2003.

[Prestwich, 2004a] Steven Prestwich. Full Dynamic Interchangeability with Forward
Checking and Arc Consistency. In Workshop on Modeling and Solving Problems With
Constraints (ECAI 04), pages 1-14, 2004.

[Prestwich, 2004b] Steven Prestwich. Full Dynamic Substitutability by SAT Encod-
ing. In Principles and Practice of Constraint Programming (CP 04), volume 3258 of
LNCS, pages 512-526. Springer, 2004.

[Roney-Dougal et al., 2004] Colva M. Roney-Dougal, Ian P. Gent, Tom Kelsey, and
Steve Linton. Tractable Symmetry Breaking Using Restricted Search Trees. In
Sizteenth European Conference on Artificial Intelligence (ECAI 04), pages 211-215,
2004.

[Various, 1991 present] Various. Proceedings of the International Workshop on Sym-
metry and Constraint Satisfaction Problems (SymCon) and of major AI Conferences
such as AAAI, IJCAI, and CP, 1991 present.

[Weigel et al., 1996] Rainer Weigel, Boi Faltings, and Berthe Y. Choueiry. Context
in Discrete Constraint Satisfaction Problems. In Twelfth European Conference on
Artificial Intelligence (ECAI 96), pages 205-209, 1996.

[Weil and Heus, 1998] Georges Weil and Kamel Heus. Eliminating Inter-
changeable Values in the Nurse Scheduling Problem Formulated as a Con-
straint Satisfaction Problem. In Workshop on Constraint-based reasoning
i conjunction with FLAIRS’95, Indianlantic, FL, 1998. Available from
www.scl.tamucc.edu/constraint95/kamel.ps.

[Wilson, 2005] Nick Wilson. Decision Diagrams for the Computation of Semiring Valu-
ations. In International Joint Conference on Artificial Intelligence (IJCAI 05), pages
331-336, 2005.

[Yip and Hentenryck, 2009] Justin Yip and Pascal Van Hentenryck. Evaluation of
Length-Lex Set Variables. In Principles and Practice of Constraint Programming
(CP 09), volume 5732 of LNCS, pages 817-832. Springer, 2009.

[Zhang and Freuder, 2004] Yuanlin Zhang and Eugene C. Freuder. Conditional Inter-
changeability and Substitutability. In Fourth International Workshop on Symmetry
and Constraint Satisfaction Problems (SymCon 04), 2004.

