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Abstract

We study the performance of some known algorithms for
solving the Simple Temporal Problem (STP) and the Tempo-
ral Constraint Satisfaction Problem (TCSP). In particular, we
empirically compare the Bellman-Ford (BF) algorithm and
its incremental version (incBF) by (Cesta & Oddi 1996) to
the4STP of (Xu & Choueiry 2003a). Among the tested al-
gorithms, we show that4STP is the most efficient for deter-
mining the consistency of an STP, and that incBF combined
with the heuristics of (Xu & Choueiry 2003b) is the most ef-
ficient for solving the TCSP. We plan to improve4STP by
exploiting incrementality as in incBF and other new incre-
mental algorithms.

1 Introduction
Many planning and scheduling applications rely on an ef-
ficient handling of temporal information. We study two
networks of metric constraints: the Simple Temporal Prob-
lem (STP) and the Temporal Constraint Satisfaction Prob-
lem (TCSP). An STP (Figure 1) is defined by a graphG =
(V, E, I) whereV is a set of verticesti representing time
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points; E is a set of directed edgesei,j representing con-
straints between two time pointsti and tj ; and I is a set
of constraint labels for the edges. A constraint labelIi,j of
edgeei,j is a unique interval [a, b], a andb ∈ R, and de-
notes a constraint of bounded differencea ≤ (tj − ti) ≤ b.
We assume that there is at most one constraint between any
two verticesei and ej and that the constraintei,j labeled
[a, b] can also be referred to as the constraintej,i labeled
[−b,−a]. A TCSP (Figure 2) is defined by a similar graph
G = (V, E, I), where each edge labelIi,j= {l1ij , l2ij , . . ., lkij}
is a set of disjoint intervals denoting a disjunction of con-
straints of bounded differences betweenti andtj . The con-
sistency of the STP can be determined in polynomial time.
Solving the TCSP isNP-complete and can be done by ex-
pressing the TCSP as a meta-CSP and solving it with back-
track search (Dechter, Meiri, & Pearl 1991). Every node in
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the tree for solving the meta-CSP (Figure 3) is an STP that
must be tested for consistency. Thus, it is important to solve
the STP efficiently. In this paper, we compare empirically
the performance of various algorithms for solving the STP
and TCSP. We plan to extend our approach to the Disjunc-
tive Temporal Problem (Stergiou & Koubarakis 2000).

2 Background
The following algorithms can be used to determine the
consistency of an STP: directional path consistency (DPC)
(Dechter 2003),4STP (Xu & Choueiry 2003a), Floyd-
Warshall (FW) and Bellman-Ford (BF) (Cormen, Leiserson,
& Rivest 2001). In (Xu & Choueiry 2003a) we showed
that4STP consistently outperforms FW, outperforms DPC
on sparse graphs, and is comparable to DPC on dense
graphs. We did not cover BF. Cesta and Oddi (1996) in-
troduced an incremental version of BF (incBF) but did not
test it on the TCSP. In (Xu & Choueiry 2003b) we showed
that 4STP outperforms FW and DPC on the TCSP, and
proposed4STP-TCSP that dramatically improves search
performance by combining4STP and two new heuristics
(EdgeOrd and NewCyc). In this paper, we achieve two
tasks: (1) Compare BF and4STP for solving the STP, and
(2) Compare incBF and4STP for solving the TCSP.

3 Algorithms tested & experiments
A known technique for enhancing the performance of solv-
ing a Constraint Satisfaction Problem (CSP) is to decom-
pose the graph of the CSP into biconnected components ac-
cording to its articulation points1, independently solve each
component, then combine the results. This technique (AP)
provides an upper bound, in the size of the largest bicon-
nected component, to the search effort (Freuder 1985). We
integrated AP in each one of the tested solvers except for
4STP in which AP is implicit. For the TCSP, we used4AC
of (Choueiry & Xu 2004) as a preprocessing step for fil-
tering the constraints. We compared the algorithms listed
in Table 1 for solving the STP and the TCSP on randomly
generated problems, measuring averages of CPU time, the
number of constraint checksCC, and the number of nodes
visitedNV (for TCSP). We used the random generators of

1An articulation point of a graph is a vertex whose removal dis-
connects the graph into its biconnected components.



(Xu & Choueiry 2003b), varying constraint densityd in
[2%, 90%], whered = |E|−emin

emax−emin

, emax=( |V |(|V |−1)
2 ), and

emin=(|V | − 1). Below we summarize the three experi-

Algorithm STP TCSP

FW+AP worse worse

DPC+AP good OK

BF+AP OK –

4STP best –

incBF+AP – good

4STP+EdgeOrg+NewCyc – better

incBF+AP+EdgeOrg+NewCyc(new) – best

Table 1:Ranking according to performance.
ments, which lead to the ranking shown in Table 1. The first
experiment compares STP solvers. We used STP instances
of 50 nodes and generated 100 instances per density value.
The results are shown in Figure 4. The second experiment
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Figure 4:Constraint checks for selected STP solvers.

compares TCSP solvers. We used problems with 10 nodes
and 3 to 5 intervals per node, and generated 600 instances
per density value. (The size of the meta-CSP grows expo-
nentially in the number of nodes in the TCSP, thus limiting
the size of tested instances.) We tested finding both the first
solution and all solutions to the TCSP (i.e., the minimal net-
work), but report in Figure 5 only the latter because the dif-
ference in behavior is more significant. Similar results hold
for NV and CPU time. Table 2 shows the averageCC gain
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Figure 5:Constraint checks for selected TCSP solvers.

of the best strategy and its lower limit (LL) and upper limit
(UL) with 95% confidence, where the gain is the difference
of the values for the last two algorithms in Table 1. Table 2
shows a high instability ford ∈ [2%, 10%]. The third experi-
ment justifies the unreliability of these results. We computed
the cumulative averages of the performance measures as the

d 4 STP IncBF Gain CC×103

CC×103 CC×103 LL Average UL

0.02 45.61 14.77 5.39 30.84 56.29

0.04 17.51 7.56 5.06 9.95 14.84

0.06 51.66 24.30 3.45 27.35 51.24

0.08 83.38 50.74 4.86 32.63 60.41

0.10 50.31 26.24 20.29 24.07 27.84

0.15 75.92 37.61 20.52 38.30 56.08

0.20 28.09 12.03 10.74 16.06 21.38

Table 2:incBF+AP vs. 4STP, both including EdgeOrg+NewCyc.

sample size increases. Figure 6 shows that, for small values
of d, the average ofCC is not stable when the sample size is
below 400 samples. Hence results for these density values
are not statistically significant.
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Figure 6:Moving averages for CC for the TCSP.

4 Conclusions
We tested empirically the behavior of various algorithms
for solving temporal networks. We showed that the perfor-
mance of incBF for solving the TCSP can be significantly
improved when combined with the heuristics proposed in
(Xu & Choueiry 2003b). In the future, we plan to exploit the
incrementality feature of incBF and of other new algorithms
indicated to us by the reviewers. This research is supported
by NSF CAREER Award #0133568.
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