
PW-CT: Extending Compact-Table
to Enforce Pairwise Consistency

on Table Constraints

Anthony Schneider(B) and Berthe Y. Choueiry(B)

Constraint Systems Laboratory, University of Nebraska-Lincoln, Lincoln, USA
{aschneid,choueiry}@cse.unl.edu

Abstract. The Compact-Table (CT) algorithm is the current state-of-
the-art algorithm for enforcing Generalized Arc Consistency (GAC) on
table constraints during search. Recently, algorithms for enforcing Pair-
wise Consistency (PWC), which is strictly stronger than GAC, were
shown to be advantageous for solving difficult problems. However, PWC
algorithms can be costly in terms of CPU time and memory consumption.
As a result, their overhead may offset the savings of search-space reduc-
tion. In this paper, we introduce PW-CT, an algorithm that modifies
CT to enforce full PWC. We show that PW-CT avoids the high memory
requirements of prior PWC algorithms and significantly reduces the time
required to enforce PWC.

1 Introduction

Consistency properties and algorithms for enforcing them on a Constraint Sat-
isfaction Problem (CSP) are one of the most intensively studied topics in Con-
straint Programming (CP). Consistency algorithms are used for inference and
effectively reduce the search space of solving a CSP. In particular, Generalized
Arc Consistency (GAC) has recently been the focus of extensive research for a
good reason: it lends itself towards simple yet highly effective algorithms. Indeed,
the low cost and effectiveness of GAC algorithms when paired with an order-
ing heuristic like dom/wdeg have made them the de facto baseline for research.
The current state-of-the-art in GAC algorithms are Compact-Table (CT) [8] and
STRBit [27], both of which use bitsets to quickly check for supports and perform
tabular reduction – the process of removing invalid tuples from constraints.

Algorithms that enforce pairwise-consistency (PWC) have received a rela-
tively modest amount of attention [23]. Recent algorithms have shown promise
on some benchmarks [15–17,20], at times considerably reducing the size of the
search space. However, enforcing GAC with either CT or STRBit outperforms

The original version of this chapter was revised: The title has been corrected. The
correction to this chapter is available at https://doi.org/10.1007/978-3-319-98334-9 48

Supported by NSF Grant No. RI-1619344. Work completed utilizing the Holland Com-
puting Center of the University of Nebraska, which receives support from the Nebraska
Research Initiative. We thank the reviewers for constructive feedback.

c⃝ Springer Nature Switzerland AG 2018
J. Hooker (Ed.): CP 2018, LNCS 11008, pp. 345–361, 2018.
https://doi.org/10.1007/978-3-319-98334-9_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-98334-9_23&domain=pdf
https://doi.org/10.1007/978-3-319-98334-9_48

346 A. Schneider and B. Y. Choueiry

these PWC algorithms due to the latter’s initialization overhead, memory usage,
and computational cost.

In this paper, we introduce PW-CT, an algorithm for enforcing full PWC,
as an extension of CT [8]. PW-CT requires few modifications to the original CT
structures, exploits mechanisms from existing PWC algorithms, and integrates
additional improvements discussed in this paper. More specifically, PW-CT uses
CT (i.e., GAC) as much as possible to avoid costly PWC checks in two ways:
by ensuring the problem is GAC before resorting to any PWC checks and by
identifying situations where GAC guarantees PWC. Finally, it exploits properties
of the dual CSP to speed-up processing and reduce memory consumption. We
compare the performance of PW-CT to that of state-of-the-art GAC and full
PWC algorithms. We show that PW-CT dominates the latter by a large margin
and outperforms both STRBit and CT on several benchmarks.

This paper is structured as follows. Section 2 provides background informa-
tion. Section 3 reviews the state of the art. Section 4 identifies directions to
improve PWC algorithms. Section 5 discusses PW-CT. Section 6 discusses our
experiments. Finally, Sect. 7 concludes this paper.

2 Background

A Constraint Satisfaction Problem (CSP) is defined as P= (X ,D, C), where X is
a set of variables, D the set of their domain values, and C is a set of constraints
ci = ⟨Ri, scope(ci)⟩, where Ri is a relation defined on the variables in the scope
of the constraint, scope(ci) ⊆ X , restricting the combination of values that the
variables can take at the same time. The arity of a constraint is the cardinality
of its scope. Solving a CSP requires assigning to each variable a value from its
domain such that all the constraints are satisfied. In this paper, we consider
table constraints, where relations are given by their allowed tuples. We use the
relational projection operator π to restrict a tuple to a set of variables.

In the hypergraph representation of a CSP, the vertices represent CSP vari-
ables. Hyperedges represent constraints and connect the variables in the scope
of the constraints. In the dual graph representation, the vertices represent the
CSP constraints and edges connect vertices that share variables. Figure 1 shows
the dual graph of a CSP with four nonbinary constraints. The edges are equality
constraints forcing the shared variables to agree on the assigned values.

Fig. 1. Dual graph (left), subscopes and blocks (center), a minimal dual graph (right)

We designate by subscope the set of CSP variables shared by two constraints,
subscope(ci, cj) = scope(ci)∩ scope(cj). Multiple edges in the dual graph may be

PW-CT 347

labeled by the same subscope. In Fig. 1, each of the subscopes AB and AC label
two edges and each of the subscopes A and ABC label one edge. The equal-
ity constraints of the dual graph are binary and piecewise functional [10,23]. A
binary constraint is said to be piecewise functional if the domains of the variables
in its scope can be partitioned such that a set from one variable is supported by
at most one set in the other and vice versa. Because of the piecewise function-
ality of the constraints of the dual graph, each subscope partitions the tuples
of a constraint into sets of equivalent tuples, which we call blocks. In Fig. 1, the
subscope AB partitions each of the two relations R1 and R2 into three blocks.
We define the signature of a block as the set of variable-value pairs of the induc-
ing subscope (e.g., {⟨A, 0⟩, ⟨B, 0⟩}). Thus, a signature is uniquely determined
by a combination of a constraint, subscope, and tuple. Janssen et al. [11] and
Dechter [7] observed that, in the dual graph, an edge between two vertices is
redundant if there exists an alternate path between the two vertices such that
the shared variables appear in every vertex in the path. Redundant edges can
be removed without affecting the set of solutions. Janssen et al. [11] introduced
an efficient algorithm for computing the minimal dual graph by removing redun-
dant edges. Many minimal graphs may exist, but all are guaranteed to have the
same number of edges. Figure 1 shows an example of a minimal dual graph.

In this paper, we exploit the following two consistency properties:

Definition 1. Generalized Arc Consistency (GAC) [18,26]: A constraint net-
work P = (X ,D, C) is GAC iff, for every constraint ci ∈ C, and ∀xj ∈ scope(ci),
every value v ∈ D(xj) is consistent with ci (i.e., appears in some support of ci).

Definition 2. Pairwise Consistency (PWC) [9]: A constraint network P = (X ,
D, C) is PWC iff, for every tuple ti in every constraint ci there is a tuple tj in
every constraint cj such that πsubscope(ci,cj)(ti) = πsubscope(ci,cj)(tj), tj is called
a PW-support of ti in cj. A CSP that is both PWC and GAC is said to be full
PWC (fPWC).

3 Related Work

The CT algorithm [8] is the current state-of-the-art algorithm for enforcing
GAC.1 It makes heavy use of a data structure called an RSparseBitSet, which is
similar to the sparse set structure [5,6]. In this paper, we extend the definition
of the RSparseBitSet to facilitate PWC operations.

STRBit [27] is a GAC algorithm similar to CT in that it operates on bitsets.
STRBit differs from CT in its data structures and how it propagates changes.
To our knowledge, a comparison of the performance of these two algorithms has
not yet appeared in the literature.

Samaras and Stergiou introduced PW-AC [23], an algorithm for enforcing
PWC. PW-AC operates on the dual graph of the CSP, taking advantage of
the piecewise functionality of the equality constraints. It propagates deletions

1 In this paper, we consider that a GAC algorithm applies tabular reduction.

348 A. Schneider and B. Y. Choueiry

of blocks of tuples, rather than individual tuples, and maintains counts of the
living tuples in each block. Notably, it iterates over every pair of constraints
with a non-empty subscope.

The parametrized algorithms PerTuple [12,13] and PerFB [24] enforcem-wise
consistency, which generalizes pairwise consistency to every set of m constraints.
Both algorithms use data structures that group the equivalent tuples in a con-
straint based on the piecewise-functionality property.

Algorithm eSTR [15], an extension of the STR family of algorithms for
GAC [14,25], enforces fPWC. It maintains PWC by tracking the counts of PW-
supports of each tuple in a constraint relative to all other constraints in the
problem and verifying a valid PW-support for each tuple as it is processed by
STR. Algorithm eSTRw is a modification of eSTR and enforces a weakened
version of fPWC by not re-queuing a constraint after a PW-support is lost.

Algorithms HOSTR and MaxRPWC+r [20] enforce consistency properties
that are weaker than PWC and incomparable to each other. fHOSTR, a variant
of HOSTR, enforces full PWC, but was found by its authors to be too expensive
relative to its weakened version. Paparrizou and Stergiou show that HOSTR and
MaxRPWC+r outperform STR2 [14] on certain benchmarks.

Some approaches for enforcing higher order consistencies apply GAC after
reformulating the CSP with new constraints or variables. Algorithm DkWC [19]
enforces k-wise consistency by adding new hybrid constraints to the problem.
The Factor Encoding (FE) enforces fPWC by adding new variables to the prob-
lem, thereby increasing the arity of constraints [16]. A decomposition of the FE
lessens the imposed arity increases from FE while still enforcing fPWC [17].

4 Improving PWC Algorithms

Below, we describe four distinct techniques to improve the performance of PWC
algorithms. These methods can be combined or exploited in isolation.

4.1 Piecewise Functionality

As mentioned in Sect. 2, Samaras and Stergiou [23] exploit the piecewise-
functional property of the equality constraints of the dual graph to infer the
blocks of equivalent tuples of two constraints with shared variables. If a tuple τ
in a constraint ci does not have a PW-support in another constraint cj , all tuples
in the block induced by πsubscope(ci ,cj)(τ) on ci can be immediately removed. Fur-
ther, all other blocks of tuples that are PW-supported by τ in all other neigh-
boring constraints (i.e., have the same signature) must also be deleted. This
operation is in stark contrast with most GAC-based algorithms that search for
supports one tuple at a time (except, of course, AC-5 [10]).

4.2 Pairwise Vs Subscope Reasoning

Algorithms for enforcing pairwise consistency usually operate on every pair of
constraints with overlapping subscopes (e.g., PW-AC partitions relations pair-
wise, eSTR counts supports pairwise, etc.). Karakashian et al. [13] and Schneider

PW-CT 349

et al. [24] exploit the fact that, for a given subscope, any number of relations
induce on a relation Ri the same unique partition. For example, in Fig. 1, the
blocks induced by subscope {A,B} on relation R1 are the same for any relation
Rj such that subscope(R1, Rj) = {A,B}.

Consequently, identifying and storing a relation’s partitions based on unique
subscopes rather than by the degree of a vertex in the dual graph can signifi-
cantly reduce the memory requirements of algorithms that exploit the pairwise
functionality of the equality constraints of the dual graph.

4.3 Minimal Dual Graph

As stated in Sect. 2, we can remove redundant edges in the dual graph of a CSP
without affecting the set of solutions. In fact, Janssen et al. [11] show that enforc-
ing PWC on a dual graph is equivalent to enforcing PWC on any of its minimal
dual graphs. Importantly, removing redundant edges can reduce not only the
degree of the graph (thus reducing the number of pairs of constraints over which
a PWC algorithm must iterate) but also the number of unique subscopes that
a PWC algorithm must take into consideration. For instance, in the example
shown in Fig. 1, removing redundant edges eliminates: (1) The need to compute
and store the partitions of R1 for the subscope {A,B} and the partitions of R3

for the subscope {A,C} and (2) The subscope {A} and the partition it induces
on each of R2 and R4. Consequently, a minimal dual graph can reduce the num-
ber of neighbors of a constraint in the problem, the number of unique subscopes
incident to a constraint, and may entirely eliminate some subscopes from the
problem. We conclude that a PWC algorithm that operates on a minimal dual
graph may reduce its memory requirements and increase its propagation speed
because of the reduced number of subscopes to consider per constraint and the
total number of unique subscopes.

4.4 Determining When GAC Is Enough to Enforce PWC

In some situations, GAC is enough to enforce PWC between constraints. The
algorithm eSTR, for example, only checks for PW-supports over “non-trivial”
subscopes, which are subscopes with a cardinality strictly greater than one [15].
In fact, the particularity of constraints intersecting on at most one variable is
discussed by Bessiere et al. [3] but PWC is unexplainably excluded from the
corresponding theorem. Below, we restate this property and give a proof:

Proposition 1. GAC is sufficient to enforce PWC over trivial subscopes.

Proof. Consider the CSP P= (X ,D, C). If a subscope is trivial (e.g., subscope =
{x} ⊂ X) the signature of each block induced by this subscope is one variable-
value pair (e.g., ⟨x, a⟩). Thus, the block loses all PW-supports only if ⟨x, a⟩ is
removed from the problem. If ⟨x, a⟩ is deleted, a tabular-reduction algorithm
necessarily removes all tuples with ⟨x, a⟩ from the problem. On the other hand,
if ⟨x, a⟩ is alive after enforcing GAC, then, by definition, ∀ci ∈ C such that

350 A. Schneider and B. Y. Choueiry

x ∈ scope(ci), there is at least one living tuple τ in the relation of ci such that
πx(τ) = a. !

We elucidate a particular situation, which arises during search, in which the
above property holds even for non-trivial subscopes as long as GAC is enforced
on a constraint prior to running a PWC algorithm:

Proposition 2. GAC is sufficient to enforce PWC on a block induced by a non-
trivial subscope whose signature includes a deleted variable-value pair.

Proof. This proposition follows from Proposition 1. Consider a block bi induced
by a non-trivial subscope σi on the constraint ci. If a dead variable-value pair
⟨x, a⟩ is in the block’s signature, a tabular-reduction GAC algorithm removes
all tuples with ⟨x, a⟩ from the problem, and as a result, it removes all the
PW-supports of bi from the relations of neighboring constraints because they
necessarily also contain ⟨x, a⟩ in their signatures. !

Algorithm eSTR [15] implicitly applies this principle by ensuring that all the
variable-value pairs of a tuple are alive before checking whether or not the tuple
has PW-supports in neighboring constraints. We exploit Proposition 2 in PWC
algorithms in a slightly more efficient manner. Assume a CSP is already PWC,
after a variable is instantiated, we run an STR-based GAC, which may delete
tuples from constraints. We now need to process these deleted tuples because
some of them may be the sole tuples of some blocks that were the PW-support
of other blocks in other constraints. In the case that a variable-value pair deleted
by GAC appears in the signature of a block in which one of these deleted tuples
appears, we can safely skip the processing we intended to do because its result
is ensured by GAC. This operation is implemented in function EnforcePWC
(Algorithm4) in Sect. 5.2. In summary, Algorithm eSTR exploits the property by
checking first whether the tuple is GAC and we exploit the property by avoiding
checking PWC on blocks that we know are dead.

5 PW-CT

We now introduce PW-CT, an fPWC algorithm that exploits the mechanisms
presented in Sect. 4. First, we describe how we modify the RSparseBitSet class
of the CT algorithm [8] and the additional data structures required for enforcing
PWC. Then, we provide the pseudocode of PW-CT.

5.1 Data Structures

PW-CT exploits the functions and data structures CT [8]. Below, we review the
CT data structures and the additions required for PW-CT.

PW-CT 351

Support Structures. Both CT and PW-CT represent the living tuples in a
constraint as an RSparseBitSet. The RSparseBitSet stores four members: an
array of reversible 64-bit integers called words,2 a reversible integer called limit
that represents the number of non-zero integers in words, an array called index
that stores the position of all non-zero integers in words in locations less-than or
equal-to limit, and an array called mask used to modify the set. Demeulenaere
et al. [8] introduce member functions of the RSparseBitSet used by PW-CT
which we briefly review: function addToMask takes an array and alters mask to be
the bitwise OR of the array and the current mask, function intersectWithMask
alters words to be the bitwise AND of the current words and mask, and function
clearMask sets the integers in mask to 0.

The RSparseBitSet for a constraint ci is denoted as living(ci). The data
structure supports[ci, x, a] is a static array of bits corresponding to the tuples of
a constraint ci that have the value a for variable x.3 To improve performance of
various functions in PW-CT, we introduce a structure indices[ci, x, a], which is
an RSparseBitSet that stores the positions in supports[ci, x, a] that are non-zero.

PW-CT uses two maps. The first, incidentCons[σ], gives the list of constraints
incident to a non-trivial subscope σ. The second, incidentSubscopes[ci], gives the
list of non-trivial subscopes incident to a constraint ci. We can optionally use the
minimal dual graph to reduce the number of generated subscopes in each map
without affecting the level of consistency enforced (see Sect. 4). Importantly, all
these support structures are created at initialization.

Blocks. We represent a block as a simple structure with a member sets, which
is a vector of pointers to supports[ci, x, a] representing the signature of the block,
and a member commonIndices, which is an RSparseBitSet of the indices shared
by all of the supports in sets. Performing an intersection of the sets in a block
computes the set of tuples with the signature corresponding to sets. In PW-CT,
blocks are never stored but always computed dynamically during search.

The function CreateBlock (Algorithm1) takes as input a constraint,
tuple, and subscope and returns a block structure, which can be used to
dynamically compute the partition of tuples of the constraint with the corre-
sponding signature. The RSparseBitSet commonIndices improves performance of
some operations of the methods listed in Algorithm2. Note that the method
initIntersection called in Line 7 is defined in Algorithm2 and makes use of
the call swap in Line 5.

Additional Methods for the RSparseBitSet Class. Algorithm2 introduces
additional methods for the RSparseBitSet class for use in PW-CT. The method
initIntersection is used in CreateBlock to initialize the RSparseBitSet
with the indices common to a collection of RSparseBitSets.

2 64-bit on most current architectures.
3 Note that we have added the additional parameter ci to supports[] to uniquely deter-
mine the constraint’s supports we are referring to in the pseudocode.

352 A. Schneider and B. Y. Choueiry

Algorithm 1. CreateBlock(ci, τ,σ)

Input: A constraint ci, a tuple τ , and a subscope σ
Output: A block b

1 j ← 0
2 foreach variable x ∈ σ do
3 b.sets[j] ← supports[ci][x][τ [x]] // τ [x] is the value for x in tuple τ
4 ind[j] ← indices[ci][x][τ [x]]
5 if ind[j].limit < ind[0].limit then swap(ind[j], ind[0])
6 j ← j + 1

7 b.commonIndices.initIntersection(ind)
8 return b

We overload the original RSparesBitSet method intersectIndex to operate
on blocks. It is similar in behavior to the original intersectIndex, differing in
that it determines if a block of tuples has a support in the set, rather than a
single variable-value pair. The method removeBlock computes the set-difference
between the RSparseBitSet and a block of tuples.

Now, we list functions omitted from Algorithm2 for brevity. The methods
save and restore respectively save and restore the state of the reversible ele-
ments in the RSparseBitSet. We maintain the number of living bits when altering
the set and numSet returns this value.4 PW-CT relies on the ability to discover
the tuples removed between two points in time (the delta of the set). To this end,
method computeDelta returns an RSparseBitSet containing the bits removed
between the current state of the RSparseBitSet and the last stored state. Method
clearDelta readies the set to track the next set of removed tuples, but does not
alter the currently set bits. These were implemented using the method save and
comparing the reversible primitives of the current state of the set and its previ-
ously saved state. Method addBlockToMask behaves like the original addToMask,
but adds to the mask only those bits common to all bit-sets in the block. Its
implementation follows from addToMask and intersectIndex. We also assume
that the bits in the RSparseBitSets are iterable and treat the bits and the tuples
they represent interchangeably in our pseudocode for simplicity.

5.2 Enforcing PW-CT

Roughly speaking, PW-CT has two main phases: a GAC phase, in which CT is
executed until quiescence, and a PWC phase that performs a single pass over
the tuples deleted by CT to uncover new non-PWC blocks. PW-CT maintains
two queues: CTQueue tracks constraints that must be ‘checked for GAC’ and
PWCQueue tracks constraints that have lost tuples thus threatening the PW-
consistency of blocks in other constraints. Both queues are sets.

Function Lookahead (Algorithm3) is the entry point for PW-CT. Lines 4
to 7 run CT until quiescence and enqueues constraints modified by GAC into
4 This can be done efficiently in C++ with Clang/GCC’s builtin popcountll.

PW-CT 353

Algorithm 2. Additional algorithms required for RSparseBitSet

1 Method initIntersection(sets: A vector of RSparseBitSets):
2 limit ← −1
3 index ← ∅
4 Expand words and index to size of sets[0].words
5 foreach i ← 0 to sets[0].limit do
6 offset ← sets[0].index[i]
7 bits ← sets[0].words[offset]
8 for set ∈ sets and bits ̸= 0 do
9 bits ← bits & set.words[offset] // Bitwise AND

10 if bits ̸= 0 then
11 words[offset] ← bits
12 limit ← limit+ 1
13 index[limit] ← offset

14 Method intersectIndex(block: A Block created by createBlock):
// If limit < block.commonIndices.numSet(), iterate from 0 to limit

15 for offset ∈ block.commonIndices do
16 intersection ← words[offset]
17 for set ∈ block.sets and intersection ̸= 0 do
18 intersection ← intersection & set.words[offset] // Bitwise AND

19 if intersection ̸= 0 then return offset

20 return -1

21 Method removeBlock(block: A Block created by createBlock):
22 for i ← limit to 0 do
23 offset ← index[i]
24 if offset ∈ block.commonIndices then
25 b ← 64-bit Integer with all bits set
26 for set ∈ block.sets and b ̸= 0 do
27 b ← b & set.words[offset] // Bitwise AND

28 words[offset] ← words[offset] & ∼b // Bitwise NOT
29 if words[offset] = 0 then
30 index[i] ← index[limit]
31 index[limit] ← offset
32 limit ← limit −1

PWCQueue. CT enqueues constraints with modified variables into CTQueue,
thus, when execution hits Line 9, the problem is GAC but not necessarily PWC.
Lines 9 to 13 call function EnforcePWC (Algorithm4) on modified constraints
to determine if the removal of tuples in each constraint ci in the queue causes
the loss of a PW-support in another constraint.

EnforcePWC iterates over all subscopes incident to a constraint and the
constraint’s most recently removed tuples, checking whether the block induced

354 A. Schneider and B. Y. Choueiry

Algorithm 3. Lookahead(P) Enforces PWC on a CSP P
Input: A CSP P = (X ,D, C)
Output: Whether the current problem is consistent

1 consistent ← true
2 if P has not been preprocessed then
3 consistent ← PreProcess(C)
4 while consistent and not empty(CTQueue) do
5 ci ← pop(CTQueue)
6 consistent ← CompactTable(ci)
7 if ci was modified then push(ci,PWCQueue)
8 if consistent and empty(CTQueue) then
9 mCons ← PWCQueue

10 for ci ∈ mCons and consistent do
11 consistent ← EnforcePWC(ci)
12 living(ci).clearDelta()
13 PWCQueue ← PWCQueue \{ci}

14 return consistent

by the combination of each subscope and tuple is empty. As discussed in Sect. 4.4,
any blocks whose signatures have variable-value pairs removed by GAC neces-
sarily have had all of their supporting blocks in neighboring constraints removed
as well. The loop beginning at Line 4 in EnforcePWC (Algorithm4) takes
advantage of this insight by discarding blocks of tuples from consideration for
PW-support checks, skipping unnecessary calls to ReviseBlock (Algorithm5).
It uses a mechanism similar to the incremental and reset-based updates [22],
where ∆x is the set of values of variable x removed by the previous call to CT.

Lines 16 to 19 check the block induced by each removed tuple for the current
subscope for validity by calling functionReviseBlock (Algorithm5). If no other
tuples in the induced block are alive in the constraint, ReviseBlock removes
the piecewise-functional blocks from all other constraints incident to the current
subscope, and enqueues the constraints modified during this process. Multiple
tuples in the set of removed tuples may belong to the same block for a given
subscope, so, Line 19 removes all other tuples from that block from the set of
tuples to check (as successive calls for the same block would be redundant).

It is advantageous to interleave CT and EnforcePWC calls because tuples
removed by EnforcePWC may enable value deletions that can be propagated
quickly by CT. To prevent running EnforcePWC until quiescence on the first
pass, a copy of the queue is created in Line 9 of Lookahead (Algorithm3). As
a result, each modified constraint is processed at most once at each PWC pass.

Proposition 3. If the CSP is initially PWC, Lookahead guarantees fPWC.

Proof. Consider a constraint ci altered by CT. Because the problem was PWC
prior to running CT, the only ‘endangered’ blocks in ci have tuples deleted
by CT. To enforce PWC, we need to check if any block bi whose signature is a

PW-CT 355

Algorithm 4. EnforcePWC(ci) Propagates invalid blocks of ci

Input: Constraint ci that has been modified by CT
Output: Whether the current problem is consistent

1 tupsToCheck ← living(ci).computeDelta()
2 for σ ∈ incidentSubscopes[ci] do
3 tupsToCheck.save()
4 for variable x ∈ σ s.t. x was modified on previous call to CT do
5 if |D(x)| < |∆x| then
6 tupsToCheck.clearMask()
7 for value a ∈ D(x) do
8 tupsToCheck.addToMask(supports[ci][x][a])

9 tupsToCheck.intersectWithMask()

10 else
11 for value a ∈ ∆x do
12 b ← an empty block
13 b.sets ← supports[ci][x][a]
14 b.indices ← indices[ci][x][a]
15 tupsToCheck.removeBlock(b)

16 for τ ∈ tupsToCheck do
17 consistent ← ReviseBlock(ci,σ, τ)
18 if not consistent then return false
19 tupsToCheck.removeBlock(CreateBlock(ci,σ, τ))

20 tupsToCheck.restore()

21 return true

Algorithm 5. ReviseBlock(ci,σ, τ) Removes supports of empty block

Input: A constraint ci, a subscope σ, and a tuple τ
Output: Whether the current problem is consistent

1 if living(ci).intersectIndex(CreateBlock(ci,σ, τ)) = -1 then
2 for cj ∈ incidentCons[σ] s.t. ci ̸= cj do
3 living(cj).removeBlock(CreateBlock(cj ,σ, τ))
4 if living(cj) was modified then
5 if living(cj).numSet() = 0 then return false
6 push(cj,PWCQueue)
7 push(cj,CTQueue)

8 return true

combination of a deleted tuple τ of ci, a subscope σi incident to ci and ci is empty
as a result of CT. If we find a block bi to be empty, we can remove the blocks
that are PW-supports of bi from all constraints cj incident to σi. Because each cj
modified in ReviseBlock is added to the PWCQueue (Line 6), the removal of
any tuple in cj by ReviseBlock that emptied a block induced on any subscope

356 A. Schneider and B. Y. Choueiry

σj is necessarily detected by the next call to EnforcePWC(cj). Running CT
in between calls to EnforcePWC on any modified constraint ensures that the
domains of the variables in the scope of the constraint are ‘synced’ with the
constraint’s relation, thus, ensuring fPWC. !

Proposition 4. The time complexity of calling EnforcePWC on a constraint
is O((|C| · t) · (⌈ t

64⌉ · |C| + |σ|)), where t is the number of tuples in the largest
constraint and σ the largest subscope.

Proof. ReviseBlock iterates over the constraints incident to a subscope, which
in the worst case is |C|−1. Each constraint may need to call removeBlock, which
requires iterating over ⌈t/64⌉ elements. Creating the block requires iterating over
σ. The only tuples evaluated by ReviseBlock are those that have been removed
from a constraint, and at most t tuples can be removed. A removed tuple can
be revised for each of its constraint’s incident subscopes. In the worst case, a
constraint has |C| − 1 neighbors in the dual graph, and each neighbor induces a
unique subscope. Therefore, each tuple in the problem may cause ReviseBlock
to be called O((|C| · t) · (⌈ t

64⌉ · |C|+ |σ|)) times. !

Algorithm 6. PreProcess(C) Runs CT and removes non-PWC tuples

Input: A set of constraints C
Output: Whether the current problem is consistent

1 Run CT until quiescence
2 if consistent then
3 consistent ← InitPWC(C)
4 if consistent then
5 forall ci ∈ C do living(ci).clearDelta()
6 consistent ← InitPWC(C)

7 return consistent

PW-CT requires an additional initialization step to guarantee that prepro-
cessing enforces fPWC. Consider the tuple τ = {⟨A, 1⟩,⟨B, 1⟩,⟨C, 1⟩, ⟨E, 1⟩} in
R1 in Fig. 1. Each variable-value pair in τ has a GAC support in R2, but no
PW-support. EnforcePWC operates on deleted tuples in order to propagate
PW-support removals, but because τ ’s variable-value pairs are GAC, τ is not
deleted by CT. Therefore, EnforcePWC is not called. To remedy this situation,
all blocks that initially lack PW-supports need first to be removed from the prob-
lem. Once this removal is done, EnforcePWC can then evaluate the deleted
tuples and propagate any other blocks that are emptied by their removal. Func-
tion PreProcess (Algorithm6) accomplishes this operation by first enforcing
GAC with CT and then calling function InitPWC (Algorithm7).

Function InitPWC considers each subscope σ in the problem. It begins by
finding the constraint cs with the smallest number of living tuples incident to σ.

PW-CT 357

Algorithm 7. InitPWC(C) Partially enforces PWC on the constraints

Input: A set of constraints C
Output: Whether the problem is consistent at preprocessing

1 for σ ∈ Subscopes do
2 cs ← constraint with fewest living tuples ∈ incidentCons[σ]
3 foreach ci ∈ incidentCons[σ] do living(ci).clearMask()
4 toCheck ← living(cs) // Makes a copy
5 for τ ∈ toCheck do
6 tuplePWC ← true
7 foreach ci ∈ incidentCons[σ] and tuplePWC do
8 if living(ci).intersectIndex(CreateBlock(ci, τ,σ))= −1 then
9 tuplePWC ← false

10 if tuplePWC then
11 foreach ci ∈ incidentCons[σ] do
12 living(ci).addBlockToMask(CreateBlock(ci, τ,σ));

13 toCheck.removeBlock(CreateBlock(cs, τ,σ))

14 foreach ci ∈ incidentCons[σ] do
15 living(ci).intersectWithMask()
16 if living(ci) was modified then
17 push(ci,PWCQueue)
18 push(ci,CTQueue)

19 if living(ci).numSet = 0 then return false
20

21 return true

The algorithm checks if the blocks induced by the subscope σ for each tuple τ
in living(cs) has a PW-support in all constraints incident to σ (Lines 6 to 9).
If the block is supported, then, for each constraint cj incident to σ, we add
the block of tuples induced by τ to the mask of living(cj) (Line 12). After
all blocks of cs are processed, the masks of each RSparseBitSet living(cj) con-
tain only PW-supported tuples. Line 15 removes non-PWC tuples by calling
the intersectWithMask method for each living(cj). In practice, we found that
in some problems the number of initially non-PWC tuples can be extremely
large causing significant slowdown in the first call to EnforcePWC after Pre-
Process. To alleviate some of this burden, Function PreProcess runs twice
InitPWC. The second call to InitPWC tends to remove fewer tuples than the
first and guarantees the removal of any block that lost PW-supports due to the
first call. Note that only the first call is strictly necessary for correctness.

358 A. Schneider and B. Y. Choueiry

6 Experiments

Our experiments run on 72 benchmarks of non-binary CSPs.5 Instances with
intension and global constraints are converted to positive table constraints,
resulting in a total of 2,210 instances. We evaluate and compare a total of 11
algorithms (Table 1) starting with the following: STR2 [14], STRBit [27], and
CT [8] enforce GAC by table reduction; eSTR2 [15] enforces fPWC; eSTR2w [15]
enforces a weakened version of fPWC; STRBit+PW-AC is an unpublished hybrid
algorithm that runs STRBit until quiescence before running PW-AC (greatly
enhancing PW-AC’s effectiveness); and PW-CT enforces fPWC. Additionally,
we evaluate eSTR2m, eSTR2wm, and PW-CTm as variants of eSTR2, eSTR2w,
and PW-CT respectively, obtained on a minimal dual graph. Finally, Algo-
rithm STRBit+PW-ACms is a variant of STRBit+PW-AC that operates on
a minimal dual graph and propagates via subscopes. We test ordering heuristics
dom/ddeg [2] and dom/wdeg [4],6 finding the first consistent solution with our
custom solver. We limit each run to 7,200 s and 8GB of memory. When an algo-
rithm times out, we add 7,200 s to the CPU time and indicate with a > sign
that the time reported is a lower bound.

We perform a paired t-test between all algorithms with a significance level
α = .05. Under dom/ddeg, CT is the best algorithm with statistical significance.
Most notably, we find that both PW-CT and PW-CTm outperform all other
eight algorithms, including both STR2 and STRBit. To our knowledge, PW-CT
is the first fPWC algorithm to dominate a recent GAC algorithm. Exploiting
a minimal dual graph improves, with statistical significance, every PWC algo-
rithm tested. One exception occurs in the benchmark bddLarge, which times out
while computing the minimal dual graph. Indeed, the number of unique, non-
trivial subscopes in the problem is extremely large, averaging 1,123,484 over
its instances.7 Surprisingly, PW-CT completes every instance in the benchmark,
while all other PWC algorithms fail to complete even one instance. Not including
bddLarge, we are able to load 1,707 instances of which 854 have non-trivial sub-
scopes. The average number of unique subscopes on the full graph is 399.5, and
264.3 on the minimal. The remainder of the section discusses only the variants
of the PWC algorithms exploiting a minimal dual graph given their superiority.

Table 1 compares the performance of the 11 algorithms. It provides the
number of instances completed (#Cmpltd), the total CPU time (ΣCPU) over
instances completed by at least one algorithm, the number of memouts (#MO),
and the average number of node visits for instances completed by all algorithms
(#NV). We exclude instances not solved by any algorithm.

PW-CT has almost the same number of memouts as GAC algorithms, testi-
fying to its low memory consumption relative to all other PWC algorithms (34
5 http://www.cril.univ-artois.fr/CPAI08/.
6 Although dom/wdeg is generally more effective than dom/ddeg, the decisions made
by dom/wdeg are considered too unstable to objectively allow comparing algorithms’
performance. Researchers studying the performance of HLC during search typically
use dom/ddeg in their experiments [1,20,21].

7 Because bddLarge is an extreme outlier, we omit it from the results.

http://www.cril.univ-artois.fr/CPAI08/.

PW-CT 359

Table 1. Summary statistics of all tested instances

dom/ddeg dom/wdeg

#Cmpltd ΣCPU (sec) #MO #NV #Cmpltd ΣCPU (sec) #MO #NV

71 Benchmarks tested with 2,210 total instances total

GAC CT 1,411 >449,421 65 2.90M 1,474 >338,246 65 1.65M

STR2 1,284 >1,327,706 64 2.90M 1,355 >1,164,208 64 1.65M

STRBit 1,370 >765,923 64 2.90M 1,445 >600,089 65 1.65M

fPWC PW-CT 1,403 >579,112 65 0.99M 1,428 >715,885 65 0.82M

PW-CTm 1,403 >567,500 65 0.99M 1,431 >696,622 65 0.82M

STRBit+PW-AC 1,213 >1,738,628 137 0.99M 1,263 >1,752,986 139 0.84M

STRBit+PW-ACms 1,247 >1,472,804 113 0.99M 1,290 >1,527,538 113 0.84M

eSTR2 1,231 >1,750,990 102 0.99M 1,282 >1,769,454 102 0.83M

eSTR2m 1,248 >1,588,847 99 0.99M 1,295 >1,627,281 99 0.83M

wPWC eSTR2w 1,227 >1,784,866 102 1.01M 1,280 >1,769,529 102 1.1M

eSTR2wm 1,243 >1,629,846 99 1.01M 1,294 >1,622,247 99 1.1M

to 72 fewer memouts). PWC algorithms that exploit a minimal dual graph incur
fewer memouts than their original versions, testifying to the importance of using
a minimal dual graph for PWC algorithms. When using dom/wdeg, the results
of the pairwise t-tests are identical to dom/ddeg with the exception of STRBit
and PW-CT. STRBit improves dramatically, beating both variants of PW-CT.
Even so, it is clear from Table 1 that the performance of PW-CT is substantially
closer to state-of-the-art GAC than to other algorithms used to enforce fPWC.

Figure 2 shows cumulative graphs of the number of instances completed for a
given time using dom/ddeg: it compares the performance of PW-CTm with the
other GAC algorithms (left) and PWC algorithms (right). While CT wins, PW-
CTm is a close second, dominating the other two GAC algorithms. PW-CTm

clearly dominates all PWC algorithms by a large margin.

Fig. 2. PW-CTm vs. GAC-based (left) and PWC algorithms (right) with dom/ddeg

Table 2 shows select benchmarks where PW-CT outperforms CT. These
benchmarks were previously shown to benefit from enforcing PWC [20]. It is

360 A. Schneider and B. Y. Choueiry

Table 2. Select benchmarks using dom/ddeg (#I is the number of instances completed
by at least one algorithm, and σ is the average number of non-trivial subscopes)

Benchmarks #I #σ ΣCPU (sec)

CT STR2 STRBit PW-CTm STRBit+PW-ACms eSTR2m eSTR2wm

aim-100 24 146.9 >46,305 >54,997 >51,105 10,766 >19,078 >24,030 >37,687

aim-200 12 218.5 >34,208 >40,218 >35,594 69 121 253 >16,773

dubois 10 2.0 >29,801 >32,711 >31,363 10,798 >17,833 >20,061 >22,621

modRenault 50 61.6 2,553 >12,520 6,036 440 1,517 2,037 2,446

radar-8-24-3-2 1 113 2,621 3,450 3,452 2,612 >7,200 3,475 3,475

thus not surprising that those results hold for PW-CT. Notably, with the excep-
tion of the radar benchmark, all PWC algorithms outperform CT, emphasizing
the usefulness of enforcing fPWC on difficult problems.

7 Conclusion

In this paper, we show that all PWC algorithms benefit from using a minimal
dual graph to improve time and space cost and that the performance of PW-CT,
our new algorithm for fPWC, is second only to CT, the best GAC algorithm.

References

1. Balafrej, A., Bessière, C., Paparrizou, A.: Multi-armed bandits for adaptive con-
straint propagation. In: Proceedings of IJCAI 2015, pp. 290–296 (2015)

2. Bessière, C., Régin, J.-C.: MAC and combined heuristics: two reasons to forsake FC
(and CBJ?) on hard problems. In: Freuder, E.C. (ed.) CP 1996. LNCS, vol. 1118,
pp. 61–75. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-61551-2 66

3. Bessière, C., Stergiou, K., Walsh, T.: Domain filtering consistencies for non-binary
constraints. Artif. Intell. 172, 800–822 (2008)

4. Boussemart, F., Hemery, F., Lecoutre, C., Sais, L.: Boosting systematic search by
weighting constraints. In: Proceedings of ECAI 2004, pp. 146–150 (2004)

5. Briggs, P., Torczon, L.: An efficient representation for sparse sets. ACM Lett.
Program. Lang. Syst. 2(1–4), 59–69 (1993)

6. le Clément, V., Schaus, P., Solnon, C., Lecoutre, C.: Sparse-sets for domain imple-
mentation. In: Proceedings of the CP Workshop on TRICS 2013 (2013)

7. Dechter, R.: Constraint Processing. Morgan Kaufmann, Burlington (2003)
8. Demeulenaere, J., Hartert, R., Lecoutre, C., Perez, G., Perron, L., Régin, J.-C.,

Schaus, P.: Compact-table: efficiently filtering table constraints with reversible
sparse bit-sets. In: Rueher, M. (ed.) CP 2016. LNCS, vol. 9892, pp. 207–223.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44953-1 14

9. Gyssens, M.: On the complexity of join dependencies. ACM Trans. Database Syst.
11(1), 81–108 (1986)

10. Hentenryck, P.V., Deville, Y., Teng, C.M.: A generic arc consistency algorithm and
its specializations. Artif. Intell. 57, 291–321 (1992)

11. Janssen, P., Jégou, P., Nougier, B., Vilarem, M.: A filtering process for general
constraint-satisfaction problems: achieving pairwise-consistency using an associ-
ated binary representation. In: IEEEWorkshop on Tools for AI, pp. 420–427 (1989)

https://doi.org/10.1007/3-540-61551-2_66
https://doi.org/10.1007/978-3-319-44953-1_14

PW-CT 361

12. Karakashian, S., Woodward, R., Choueiry, B.Y.: Improving the performance of
consistency algorithms by localizing and bolstering propagation in a tree decom-
position. In: Proceedings of AAAI 2013, pp. 466–473 (2013)

13. Karakashian, S., Woodward, R., Reeson, C., Choueiry, B.Y., Bessiere, C.: A first
practical algorithm for high levels of relational consistency. In: Proceedings of
AAAI 2010, pp. 101–107 (2010)

14. Lecoutre, C.: STR2: optimized simple tabular reduction for table constraints. Con-
straints 16(4), 341–371 (2011)

15. Lecoutre, C., Paparrizou, A., Stergiou, K.: Extending STR to a higher-order con-
sistency. In: Proceedings of AAAI 2013, pp. 576–582 (2013)

16. Likitvivatanavong, C., Xia, W., Yap, R.H.C.: Higher-order consistencies through
GAC on factor variables. In: O’Sullivan, B. (ed.) CP 2014. LNCS, vol. 8656, pp.
497–513. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10428-7 37

17. Likitvivatanavong, C., Xia, W., Yap, R.: Decomposition of the factor encoding for
CSPs. In: Proceedings of IJCAI 2015, pp. 353–359 (2015)

18. Mackworth, A.K.: Consistency in networks of relations. Artif. Intell. 8, 99–118
(1977)

19. Mairy, J.-B., Deville, Y., Lecoutre, C.: Domain k-wise consistency made as sim-
ple as generalized arc consistency. In: Simonis, H. (ed.) CPAIOR 2014. LNCS,
vol. 8451, pp. 235–250. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
07046-9 17

20. Paparrizou, A., Stergiou, K.: Strong local consistency algorithms for table con-
straints. Constraints 21(2), 163–197 (2016)

21. Paparrizou, A., Stergiou, K.: On neighborhood singleton consistencies. In: Pro-
ceedings of IJCAI 2017, pp. 736–742 (2017)

22. Perez, G., Régin, J.-C.: Improving GAC-4 for table and MDD constraints. In:
O’Sullivan, B. (ed.) CP 2014. LNCS, vol. 8656, pp. 606–621. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-10428-7 44

23. Samaras, N., Stergiou, K.: Binary encodings of non-binary constraint satisfac-
tion problems: algorithms and experimental results. In: JAIR vol. 24, pp. 641–684
(2005)

24. Schneider, A., Woodward, R.J., Choueiry, B.Y., Bessiere, C.: Improving relational
consistency algorithms using dynamic relation partitioning. In: O’Sullivan, B. (ed.)
CP 2014. LNCS, vol. 8656, pp. 688–704. Springer, Cham (2014). https://doi.org/
10.1007/978-3-319-10428-7 50

25. Ullmann, J.R.: Partition search for non-binary constraint satisfaction. Inf. Sci.
177(18), 3639–3678 (2007)

26. Waltz, D.: Understanding line drawings of scenes with shadows. In: Winston, P.
(ed.) The Psychology of Computer Vision, pp. 19–91. McGraw-Hill Inc., New York
City (1975)

27. Wang, R., Xia, W., Yap, R.H.C., Li, Z.: Optimizing simple tabular reduction with
a bitwise representation. In: Proceedings of IJCAI 2016, pp. 787–793 (2016)

https://doi.org/10.1007/978-3-319-10428-7_37
https://doi.org/10.1007/978-3-319-07046-9_17
https://doi.org/10.1007/978-3-319-07046-9_17
https://doi.org/10.1007/978-3-319-10428-7_44
https://doi.org/10.1007/978-3-319-10428-7_50
https://doi.org/10.1007/978-3-319-10428-7_50

	PW-CT: Extending Compact-Table to Enforce Pairwise Consistency on Table Constraints
	1 Introduction
	2 Background
	3 Related Work
	4 Improving PWC Algorithms
	4.1 Piecewise Functionality
	4.2 Pairwise Vs Subscope Reasoning
	4.3 Minimal Dual Graph
	4.4 Determining When GAC Is Enough to Enforce PWC

	5 PW-CT
	5.1 Data Structures
	5.2 Enforcing PW-CT

	6 Experiments
	7 Conclusion
	References

