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ABSTRACT
The building identification (BID) problem is based on a pro-
cess that uses publicly available information to automati-
cally assign addresses to buildings in satellite imagery. In
previous work, we have shown the advantages of casting the
BID problem as a Constraint Satisfaction Problem (CSP)
using the same generic constraint-model to represent all
problem instances. However, a generic model is unable to
represent with the necessary precision the addressing varia-
tions throughout the world, limiting the applicability of our
previous approach. In this paper, we describe the end-to-end
process used to solve the BID with a new model-generation
technique that uses instance-specific information to auto-
matically infer a representative constraint model of the BID.
This inferred model is used by our custom constraint solver
to identify buildings in satellite imagery more efficiently and
with higher precision than using a single model. We evalu-
ate our approach on El Segundo California, and empirically
demonstrate its effectiveness for geographic areas larger than
previously tested. We conclude with a discussion of the gen-
erality of our approach, and present directions for future
work.
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1. INTRODUCTION
The amount of geospatial information on the Web has rapidly
increased thanks in large part to the creation of online ser-
vices such as Google Maps1 and MSN Virtual Earth.2 This
recent surge in publicly available information has spurred
the development of new and innovative data-integration ap-
plications. One such application is the building identifica-
tion framework introduced by Michalowski and Knoblock
[15]. This framework enables a system to integrate tradi-
tional geospatial data (satellite imagery, vector data, etc.)

1maps.google.com
2maps.live.com
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with non-traditional data (phone books, property tax infor-
mation, etc.) to identify buildings in a given satellite image.
The goal of this framework is to provide a user with the
ability to delimit a geographic area of interest and identify
the addresses of the buildings found in that area.. The iden-
tification process exploits global addressing rules to assign
potential addresses to buildings. However, to expand the
coverage of our system, the building identification process
must not only use global addressing rules but also identify
and exploit the local addressing customizations identified
around the world, such as block numbering in the US and
red/black numbering in Europe where one building is as-
signed two addresses of different colors.

The work by Michalowski and Knoblock [15] showed that
the non-trivial task of integrating publicly available data
can be accomplished by casting the BID problem as a Con-
straint Satisfaction Problem (CSP). A CSP is defined by a
set of variables V, a set of variable domains D, and a set of
constraints C. These constraints are relations defined over
subsets of the variables and restrict the allowable combina-
tions of values to variables. An assignment of a value to a
variable is defined as a variable-value pair. A solution to
a CSP is an assignment of one value for each variable such
that all constraints are satisfied. Finally, the task may be
to find one solution, all solutions, etc.

Therefore, solving a BID problem instance cast as a CSP
entails two key steps: building a constraint model of the
problem instance and solving the constraint model. The
constraint model plays a vital role in determining the pre-
cision of the returned solutions. Without a representative
model of a problem instance, it is unrealistic to expect pre-
cise results regardless of the effectiveness of the constraint
solver. For the BID problem, a good constraint model must
account for the various addressing variations encountered
throughout the world without relying on a domain expert
to manually construct models for all areas of the world. To-
wards this end, we present a new model-generation tech-
nique that exploits the data found within a problem instance
to automatically specialize a ‘generic’ model, thus yielding
a representative model of the instance.

Furthermore, the benefits of an accurate model are only fully
realized when the solving mechanism takes advantage of the
structure and characteristics of a problem instance. To gen-
erate a precise solution, the solving component must be flex-
ible in supporting varying problem models. To improve the



performance of problem solving, the solver should exploit
the structure of the problem and incorporate appropriate
heuristics to reduce the explored search space. In this paper
we present a customized solver that improves the scalability
of previous approaches by allowing constraints to be turned
on and off based on the problem instance, exploiting the
inherent structure found in the BID problem, and using ap-
plicable heuristics to speed up search.

This paper is structured as follows. Section 2 motivates
our approach and provides an overview of the BID problem
solving-process with an example problem scenario. Section 3
describes our constraint-inference framework, and Section 4
shows how the model of an instance is generated using the in-
ferred constraints. Section 5 describes our specialized solver
and Section 6 shows empirically the improvements intro-
duced by our approach. Section 7 relates our contribu-
tion to problem modeling and solving and to previously ex-
plored methods for building identification. Finally, Section 8
demonstrates the generality of our approach by identifying
various settings where it is desirable and identifies directions
for future research.

2. THE BID PROBLEM
Our work is motivated by the problem of mapping postal
addresses to buildings in satellite imagery using publicly
available information, which we introduced as the Building
Identification (BID) problem. This problem takes as input
a bounding box that defines the area of a satellite image,
buildings identified in the image, vector information that
specifies streets in the image, and a set of phone-book en-
tries for the area. The task is to find the set of possible
address assignments for each building. In the context of a
web application, a typical BID problem scenario is as fol-
lows. A user, presented with a map such as a Google map,
either selects a specific building in an area of interest and
requests the address of the building, or provides an address
and requests the buildings that could have this address.

To be useful as a web application accessed online, this ap-
plication needs to contend with the slight addressing vari-
ations found in cities throughout the world. For example,
some cities adhere to a block numbering scheme where ad-
dresses increment by a fixed factor (i.e., 100 or 1000) across
street blocks while other cities do not. The direction in
which addresses increase also varies, in some cities this oc-
curs to the East while in others it is to the West. In other
cities, addresses along East-West running streets increase to
the West in one part of town but to the East in another
part. Finally, the globalization of addressing across conti-
nents ensures that some general guidelines are followed, but
this standardization is typically met with regional/cultural
customization such as the red/black numbering in Europe
or the block numbering in the US. Therefore, to expand this
application to support unseen addressing characteristics re-
quires the addition of new constraints.

The creation of individual models that account for all of
the addressing constraints for each city in the world is an
overwhelming and unrealistic task. However, the work re-
quired of the expert to define constraints that capture all
of the characteristics of addressing seen to date is relatively
small and manageable. Therefore, we propose a framework

in which the constraint model of the area of interest is dy-
namically built by augmenting the set of basic constraints,
which form the generic constraint model, with those con-
straints that specify the addressing schema that governs the
area of interest. This customized model is then provided to
a solver that leverages the model’s features to efficiently as-
sign addresses to buildings for the given area. This approach
improves the precision of the returned solution when com-
pared to previous work that used the same, generic model
to solve all instances of the BID problem.

Our proposed end-to-end process for solving a BID prob-
lem instance is shown in Figure 1. Generally speaking, the
process of solving a BID problem begins by taking instance-
specific data and inferring a representative constraint model
of the instance. This inferred constraint model is passed to
a model generation component, which creates a full model
of the problem. Finally, a CSP solver solves the constraint
model by assigning address labels to all of the buildings in
the image and returns this set of labels to the user. In Sec-
tions 3, 4, and 5 we describe each component in more detail,
outlining the challenges present for the corresponding com-
ponent. Our proposed approach improves upon the process
used in our previous work [15] in two ways.

Figure 1: The end-to-end process for solving a BID

problem instance

First, the previous work on solving a BID problem assumed
that the same generic model represented all problem in-
stances. As we have shown, this assumption is not realistic.
Studying various areas throughout the world reveals the ex-
istence of different addressing schemes, many of which apply
only regionally. Some examples of these schemes are: block
numbering seen in certain cities in the US, districting in
Venice Italy, red/black numbering seen in some parts of Eu-
rope, and others. To deal with these regional variations, we
replace the static modeling approach with a dynamic one,
represented by the two components within the gray box in
Figure 1.

Second, we had previously used a generic constraint solver
CPlan [19]. While that solver was useful for quickly es-
tablishing the feasibility of the approach and was able to
handle small problems, it did not exploit any characteristics
specific to the BID problem. Indeed, it was unable to solve
problem instances with more than 34 buildings and did not
have the flexibility to turn constraints on/off as needed. The
new customized constraint solver we have developed for the
process exploits the inherent structure found in BID prob-
lem instances and, as our results show in Section 6, is able to
efficiently solve much larger problem instances then was pre-
viously possible. The flexibility of turning constraints on/off
allows the overall solving process to handle the addressing



variations mentioned previously.

To illustrate our solving process, consider the BID prob-
lem example shown in Figure 2. We are presented with a
satellite image of an area in El Segundo, California and we
would like to identify the buildings in this image. We use
the coordinates that define the area’s bounding box to re-
trieve NGA vector data and phone-book entries from Yahoo
specific to this area. The vector data allows us to determine
the set of potential street assignments for any given build-
ing and the phone book provides a list of known addresses.
We would like to use this information in conjunction with
knowledge of the addressing characteristics for El Segundo
to assign address labels to all of the buildings in the area
(note that one building may receive multiple labels). We
have additional information, obtained from a data source
such as a gazetteer, that provides a small set of data points
identified by both an address and its latitude and longitude
coordinates. We can use this additional information to in-
fer which of the known addressing constraints apply to El
Segundo, eliminating the need to provide this information
a priori. Using a representative model generated from the
above mentioned data, we use a constraint solver to assign
address labels to the buildings. At the end of the process,
we have provided information not available in any one data
source (address labels for buildings given a satellite image
of El Segundo) by integrating publicly available data and
extracting new knowledge using this integration.

Figure 2: A simple instance of the BID problem

3. CONSTRAINT INFERENCE
As stated in Section 2, one of our contributions is a dy-
namic approach to model generation that uses instance-
specific data to infer applicable constraints. In this section,
we define our inference framework and provide examples of
all introduced concepts. Section 3.1 details the procedure
used by this framework to infer the applicable constraints.
Figure 3 informally defines our general inference framework.
The generic model has the set CG of constraints that hold

Given:

• a generic CSP model of a particular class of problems
containing a set of generic constraints CG,

• a library with a set of constraints CL applicable to this
class,

• a set of data points {Di}, where each data point Di

has a set of features,

a Constraint Inference Framework is a set of rules {Rm}
along with an algorithm (i.e., inference engine) that operates
on these rules. The rules map the features of Di to the
constraints {CL} of the library, indicating which constraints
govern a problem instance. The governing constraints, union
with CG, define the constraint model for the given instance.

Figure 3: Constraint inference framework

for all problems of a problem class. For example, in the BID
problem all known addresses have to be assigned to a build-
ing, and corner buildings are only assigned to one street.

Data Points: Generally speaking, data points {Di} can
be any elements of the input data, such as information that
instantiates some of the CSP variables of the generic CSP
model. These data points are described using a set of domain-
specific features defined by a domain expert. In the BID
problem, data points are landmark buildings defined by the
following set of features: ID, Address Number, Street Name
and Orientation, Side of Street, Latitude, Longitude, Block
Number, and Street Ordering. The British Prime Minister’s
residence at 10 Downing Street or the White House at 1600
Penn Avenue are two examples of a data point.

Table 1: Examples of constraints in the constraint li-

brary

Name Description

Addresses on the same side of a
Parity (odd/even)

street have the same parity

Addresses increment continuously
Continuous

by a fixed number n

Block Numbering Addresses increment by a factor of

(Grid) k across grid lines

Addresses increase monotonically
Ordering

along a given street

. . .

Constraint Library: The constraint library consists of a
set of constraints CL that represent the additional character-
istics introduced by variations of problem instances within
a problem class. An individual constraint captures a certain
characteristic that is only applicable to some problem in-
stances. Example constraints in the BID constraint library
are shown in Table 1. This library serves as the repository
from which our framework selects applicable constraints and
adds them to the generic constraint model.



Applicability Rules: The rules in our framework are pre-
defined by a domain expert, similar to the use of expert
modules in Proverb [14]. They are separated from the
constraints in the library because they act as an ‘inter-
mediary’ between the constraints and the features defining
the data points (variables in the CSP model). The differ-
ences between rules and constraints are as follows: A con-
straint’s scope is over a subset of the variables in the model.
Therefore, a constraint is satisfied given a particular set of
variable-value pairs. The rules are triggered by a predicate
function over the features of the variables in the problem in-
stance (the head of the rule). When this function is true, the
constraint (whose scope is the variables in the head of the
rule) is asserted, i.e. added to the constraint model. The
generic constraints for the given problem class are always
included in the model. An additional benefit to using rules
is that multiple rules can map to a single constraint, allow-
ing for a stronger support for the level of inference of the
constraint. Our rule language supports any programmable
predicate expressions and rules are defined using the follow-
ing format:

1. If 〈test points’ features for rule applicability〉
2. If 〈test points’ features for constraint applicability〉
3. Then 〈add positive support to constraint〉
4. Else 〈add negative support to constraint〉

The first test checks the applicability of the rule, the second
that of a constraint from the constraint library. If the sec-
ond test succeeds, the positive support of the constraint is
increased, otherwise the negative support of the constraint
is increased. Finally, as in a classical Expert System archi-
tecture, the rules are separated from the inference engine
making the inference framework applicable across problem
domains. A sample rule for the BID problem is shown in
Figure 4. This rule checks for the applicability of the Parity
constraint, which states that if two points are on the same
street and on the same side, then the parity of their address
number must be the same.

Parity Rule

If Street(P1)=Street(P2) then
If [SamePar(Num(P1),Num(P2)) ∧ SameSide(P1,P2)] ∨

[OppPar(Num(P1),Num(P2)) ∧ OppSide(P1,P2)]
Then Add positive support for Parity constraint
Else Add negative support for Parity constraint

Figure 4: Sample BID problem applicability rule

3.1 Inference process
The selection of constraints, based on the information found
in the problem (data points), is the key contribution of our
framework. Previous work in the Constraint Programming
(CP) community on selecting constraints from a library has
shown that such an approach is an effective method to mod-
eling CSPs [5, 8]. As such, our framework uses the constraint
library as a ‘knowledge base’ from which we can enrich the
generic model. The selection of constraints is a three-step
process.

First, in order to enhance the performance of testing rule

applicability and the scalability of the inference engine, we
place the data points into buckets, similarly to the buckets
approach of [13]. A single bucket is defined by an attribute
value (i.e., Street name A) and represents the first If con-
dition in the applicability rules. This mechanism allows our
framework to efficiently select the two data points to com-
pare, allowing the framework to scale to large sets of data
points. Second, after comparing all data points within each
bucket, the inference engine has a set of supports, both pos-
itive and negative, for all inferred constraints. Constraints
with no supports may also exist. Third, before selecting
which constraints from the constraint library to add to the
generic constraint model, all constraints are categorized into
one of three categories, applicable, non-applicable, or un-
known, based on their respective set of supports. The cat-
egorization of constraints is an important step towards de-
termining which constraints to add to the generic model.
If a given constraint receives no support, it is classified as
unknown. For all other constraints, they are categorized
as applicable or non-applicable depending on their support
level, a function of the positive and negative supports of the
constraint that allows the framework to express confidence
in its inference. The enriched constraint model Cnew is de-
fined as CG

S

Ca where CG are constraints in the generic
model and Ca ⊆ CL are constraints classified as applicable
and selected from the constraint library.

For the purpose of our evaluations, a support level of 1 (the
constraint has at least one positive support and no negative
support) classifies a constraint as applicable. Non-applicable
and unknown constraints are not added to the CSP model.
This setup enforces a binary classification of constraints and
uses a minimum support level. Studying the impact of sup-
port levels is our next course of action and is discussed in
Section 8. Note that it is possible that a constraint can be
incorrectly inferred. This incorrect inference may be caused
by noisy data points or by a lack of information in the initial
problem definition. For the evaluations carried out in this
paper, we assume that all constraints are correctly inferred
as long as the inferred model has at least one solution. How-
ever, we are currently exploring the use of support levels and
constraint propagation techniques as two ways to deal with
noisy or uninformative data [16].

4. CONSTRAINT MODEL GENERATION
Once a set of applicable constraints has been inferred, the
problem model must be generated. The ‘Model Generation’
component shown in Figure 1 defines the variables and their
domains and uses the inferred constraints to generate con-
straints over the problem variables. Our model-generation
process also provides an additional improvement over our
previous approach [15]. As we show in our experimental
evaluation, our new model formulation improves the perfor-
mance of the constraint solver. Our new model has three
types of variables: orientation variables (called global vari-
ables by Michalowski and Knoblock [15]), building variables,
and corner variables. The orientation variables describe the
overall layout of the map, such as the direction in which the
numbers appear. The building variables store the numeric
address assignments to a specific building and the corner
variables store the street assignments to corner buildings.

There are four orientation variables, exactly like the ones



described by Michalowski and Knoblock [15]. Normally, the
model has exactly one of each of the four orientation vari-
ables. This fact reflects that street numbering schemas are
homogeneous over the considered geographical area. How-
ever, there are real-world situations where orientations differ
between streets, as is the case for the city of Belgrade. Our
model can easily accommodate such non-homogeneous num-
bering schemas by generating additional orientation vari-
ables for those streets that do not follow the regular pattern.

The model includes a building variable for every building on
the map. The domain of each such variable is the set of all
addresses (a combination of a street and a number) that the
building can take. To populate the domain for a building
on a given street, Michalowski and Knoblock [15] enumer-
ated all addresses from 1 to the largest number that appears
in the phone book for that street. However, choosing the
largest phone-book address is an arbitrary limit, and leads
to incorrect results when the correct solution contains ad-
dresses larger than the largest phone-book address. To ad-
dress this issue, in our model the range of possible addresses
is specified as (0,∞), unless the largest value is known. Note
that the domains contain values that are not in the phone
book, and thus the solutions that we find contain values
for the missing addresses. Domains are represented as a
set of intervals, and in Bayer et al. [4], we discuss in detail
this representation and introduce reformulation techniques
to reduce the size of these intervals.

We include a corner variable in the constraint model for ev-
ery corner building on the map. The domain of a corner
variable is the set of streets to which the building is adja-
cent. We use separate variables for the assignment of an
address and a street, where an address is a combination of a
street and a number, for the following reason. Determining
the streets on which corner buildings lie before we assign
numbers to them decomposes the constraint network into
chains, as discussed by Bayer et al. [4]. Note that the corner
variables are hidden variables, in the sense that they are not
part of the solution reported to the user. They are variables
that only exist to facilitate the decomposition of the prob-
lem. Finally, we reduced the arity of the generic constraints
defined by Michalowski and Knoblock [15] but due to a lack
of space, we omit the details from this paper.

In this paper, we claim that a specialized model is likely
to produce more precise solutions than a generic model.
This statement is supported by the following points: (1)
A generic constraint model represents the least constrained
model for a BID problem instance, and (2) All constraints
in the constraint library are monotonic (the addition of a
new constraint cannot increase the set of consistent solu-
tions). Therefore, any constraint model not equivalent to
the generic model is guaranteed to generate a solution space
whose size is less than or equal to the size of the solution
space of the generic model. It is possible that the special-
ized model, for lack of sufficient information in the data, is
still not able to narrow down the set of consistent solutions
to a single one, but returns a subset of the solutions of the
generic model. This subset still represents a reduction in
the solution space and, conversely, an increase in the pre-
cision of the returned solutions. Figure 5, where PG is the
problem with generic constraints and Pnew is the problem

with inferred constraints, illustrates the reduction of the so-
lution space by the addition of Ca. The results presented in
Section 6 show the increased precision.

Figure 5: Solution space reduction by the addition of

inferred constraints

5. SOLVING A BID PROBLEM
The intuition behind solving a BID problem instance is as
follows. When presented with a user query, the satellite
imagery provides us with the buildings that need to be as-
signed addresses. Because we do not know which streets
each building could lie on, we use the vector data to de-
termine this information. Finally, the phone-book entries
provide us with a set of addresses that are known for the
area and must appear in the final solution. We combine all
of the gathered and induced information with the address-
ing characteristics for the area to assign address labels to
the buildings in the image. Section 3 showed how we de-
termine which addressing constraints characterize the given
area. Section 4 detailed how the gathered and induced infor-
mation is combined with the inferred constraints to generate
a customized model of the problem instance. Below, we give
a brief overview of our specialized solver used to solve the
customized constraint model.

Our specialized solver is implemented as a backtrack-search
solver in Java that uses backtrack search (BT) with nFC3,
a look-ahead strategy for non-binary CSPs [6], and conflict-
directed back-jumping [18]. It exploits the topology of the
problem to improve the performance of search in the fol-
lowing way. After we assign streets to the corner buildings,
any ordering constraint between a corner building and a
building on a different street is deactivated. Thus, once the
orientation and corner variables have been instantiated, the
constraint network becomes a forest.

Freuder [10] showed that tree-structured constraint graphs
can be solved in polynomial time. We first apply (gener-
alized) arc-consistency directionally from the leaves of the
tree to the root, chosen arbitrarily. Then, when no domain
is wiped out by directional arc-consistency, we can instanti-
ate the nodes of the tree in a backtrack-free manner (i.e., in
linear time in the number of the nodes). Consequently, in
our solver, as long as nFC3 does not cause a domain wipe-
out, we can stop search and guarantee solvability without
instantiating the remaining variables. In this sense, the cor-



ner variables are backdoor variables of the CSP3.

By leveraging the structure of the BID problem and incor-
porating reformulation and abstraction techniques, we are
able to support larger problem instances than were previ-
ously possible. Furthermore, our specialized solver allows
constraints to be turned on/off as needed, providing sup-
port for varying problem models. For more implementation
and algorithmic details, we refer the reader to our work pre-
sented in Bayer et al. [4].

6. EXPERIMENTAL EVALUATION
In this section, we present experimental results obtained
when applying our framework to El Segundo California (see
Figure 6). The applicable constraints that characterize the
addressing found in this area are the following: (1) Parity
constraints restrict addresses to the same parity for houses
on the same side of a given street and to the opposite parity
for houses on opposing sides of the street, (2) Orientation
constraints specify the direction in which address numbers
increase along a street, and (3) 100-Block Numbering con-
straints indicate that addresses go up by increments of 100
across blocks. To generate a specialized model for this area,
we applied our constraint-inference framework using vari-
ous data-point sources. We were able to correctly identify
all of the applicable constraints using 26 data points in this
area. Therefore, we use the specialized model generated us-
ing these data points throughout all of the experiments. For
a thorough evaluation of the effects that data points have
on inferring constraints for different areas in the US, see our
work presented in Michalowski et al. [16].

Figure 6: El Segundo area used in experiments

Having inferred the constraint model for El Segundo, we
validate our claims of improved solution quality and solving
efficiency by applying the model to several different regions
in the city of El Segundo. These cases vary in size and which
regions of the city they cover. Table 2 describes the prop-
erties of the regions on which we ran our experiments. The

3Backdoor variables are those variables whose instantiation
reduces the CSP into a tractable problem [12].

largest region tested by Michalowski and Knoblock [15] con-
tained 34 buildings and a single city block. All of our areas
represent an increased problem size over that work. The
completeness of the phone book indicates what percentage
of the buildings on the map have a corresponding address
in the phone book. We created the complete phone books
using property-tax data, and the incomplete phone books
using real-world phone books. The number of building-
address combinations is the number of possible combina-
tions of buildings and phone-book addresses. Note that this
number is smaller when the phone book is incomplete than
when it is complete.

Table 2: Case studies used in experiments

Case study Phone-book Number of. . .

completeness bldgs blocks building-address
combinations

NSeg125-c 100.0% 4160
NSeg125-i 45.6%

125 4
1857

NSeg206-c 100.0% 10009
NSeg206-i 50.5%

206 7
4879

SSeg131-c 100.0% 3833
SSeg131-i 60.3%

131 8
2375

SSeg178-c 100.0% 4852
SSeg178-i 65.6%

178 12
2477

Our case study results are summarized in Tables 3 and 4,
and divided into two categories: (1) The problem model
without the block-numbering constraint, and (2) The prob-
lem model with the block-numbering constraint. As the
work by Bayer et al. [4] showed, without the block-numbering
constraint (called the grid constraint by Bayer et al. [4])
the BID problem can be solved in polynomial time using a
matching algorithm. The existence of the block-numbering
constraint forces the BID problem solver to use the back-
track search CSP algorithm. Therefore, to carry out a fair
comparison with previous results, we demonstrate the im-
provement introduced by our inference framework for both
the matching and search algorithms. To further demonstrate
the effect inferred constraints have on the solving process,
for each algorithm we present results obtained when the Par-
ity and Ordering constraints (denoted by orientation cons
in Tables 3 and 4) are included and when they are unknown.
Runtime reports the runtime, in seconds, required to solve
the problem, Domain size reports the geometric mean of
the domain size for a building, Runtime reduction and Do-
main reduction report the factor by which the average do-
main size and runtime were reduced when using the cus-
tomized model.

As our results show, the use of a customized constraint
model greatly improves the performance of the solver. The
results for the matching algorithm presented in Table 3 show
on average a factor of 17 improvement in runtime and a
factor of two improvement in domain reduction. As Bayer
et al. [4] noted, every building has the correct label in its
domain (resulting in a perfect recall). Therefore a factor
of two domain reduction results in a large increase in the
solution’s precision. For the CSP search algorithm results
presented in Table 4, the domain reduction is less than that
of the matching algorithm results, although there is still a
reduction of an average factor of 1.68. This is due to the



Table 3: BID problem results for case studies without

the block-numbering constraints

Matching-Based Solver

W/o orientation cons W/ orientation cons
Runtime Domain Runtime Domain Runtime Domain

(sec) size (sec) size reduction reduction
NSeg125-c 90.87 1.95 5.13 1.0 17.71x 1.95x
NSeg125-i 41.25 6.84 2.42 4.68 17.05x 1.46x

NSeg206-c 393.04 2.70 22.28 1.39 17.64x 1.94x
NSeg206-i 192.98 8.75 11.08 5.83 17.42x 1.50x

SSeg131-c 152.29 3.52 9.78 1.90 15.57x 1.85x
SSeg131-i 46.62 13.05 3.04 4.06 15.33x 3.21x

SSeg178-c 379.96 3.59 19.25 1.93 19.74x 1.86x
SSeg178-i 79.24 8.68 5.05 3.41 15.69x 2.55x

Average 17.02x 2.04x

Table 4: BID problem results for case studies with the

block-numbering constraints

CSP Search Solver

W/o orientation cons W/ orientation cons
Runtime Domain Runtime Domain Runtime Domain

(sec) size (sec) size reduction reduction
NSeg125-c 22397.08 1.22 1962.53 1.0 11.41x 1.22x
NSeg125-i 22929.49 6.11 3987.73 4.18 5.75x 1.46x

NSeg206-c 198169.43 1.21 10786.33 1.0 18.37x 1.21x
NSeg206-i 232035.89 7.91 12900.36 4.99 17.99x 1.59x

SSeg131-c 173565.78 1.56 125011.65 1.41 1.39x 1.11x
SSeg131-i 75332.35 12.56 17169.84 3.92 4.39x 3.20x

SSeg178-c 523100.80 1.41 284342.89 1.31 1.84x 1.08x
SSeg178-i 334240.61 8.24 62646.91 3.23 5.34x 2.55x

Average 8.31x 1.68x

fact that the search algorithm includes the block-numbering
constraint which further constrains the problem and pro-
duces small final domain sizes. However, we can still see
a significant improvement in the runtime when the inferred
constraints are included in the model. On average, we see a
factor of 8.31 improvement in runtime, with some scenarios
seeing a reduction by a factor as large as 18.37.

7. RELATED WORK
We divide the work related to the topics described in this
paper into two main bodies of research: modeling for Con-
straint Programming (CP) and geospatial data integration.
Recent work in CP modeling aims at automatically learn-
ing constraint networks from data. Coletta et al. [8] auto-
matically learn constraint networks from full solutions (both
consistent and inconsistent). Bessière et al. [7] use histori-
cal data (solutions previously seen) to learn constraint net-
works. Finally, Bessière et al. [5] propose a SAT-based
version-space algorithm for acquiring constraint networks
from examples. All of these approaches are a way to model
a problem class without having to explicitly state the con-
straints. However, each approach uses full problem solu-
tions to learn the constraint networks. In our work, we do
not require full solutions to a problem instance but only a
small number of known values (a small set of data points).
Furthermore, our work identifies small variations of similar
problem classes while previous work focuses on finding con-
straint networks for a particular problem class. As future
work, we propose to extend the techniques in this branch of
research to support the types of constraints encountered in

the BID problem (see Section 8), allowing us to automati-
cally build-up the constraint library.

Specifically related to the BID problem, the work described
by Bakshi et al. [3] presents methods to accurately geocode
addresses using publicly available data sources. The end
result of this work is accurate latitude and longitude coor-
dinates for buildings in a given area. This work also uses
online sources to improve the accuracy of building locations.
The goal of this work is similar to ours in that their work at-
tempts to identify buildings in satellite imagery. However,
the authors are provided with an address and attempt to
find the accurate position of the building in the image while
we attempt to identify buildings in imagery that could be
assigned the given address. Furthermore, this work assumes
that the sources used to locate buildings in an image are
complete, meaning they contain all of the buildings for a
given area. This assumption does not hold for areas of the
world where geospatial data is not readily available or where
the requisite data is found across multiple sources.

There has also been work done on identifying buildings in
satellite imagery and merging geospatial databases using
computer vision approaches [1, 2, 9]. While some of the
goals in this work are similar to ours (identifying objects in
images), the work is primarily focused on the actual detec-
tion of buildings in the images. Thus, the goal of this work
varies from our goal of labeling and reasoning over specific
buildings in images. This work could serve as a source of
information for the inference framework we developed.

8. DISCUSSION AND FUTURE WORK
In this paper, we describe improvements to the Building
Identification (BID) problem-solving process. We present a
framework for inferring constraint models specific to a given
problem instance and a specialized solver that leverages the
inherent structure of BID problems and exploits character-
istics of the inferred model. We empirically show how the
customized problem model improves the efficiency and pre-
cision of the solving process using real-world data, and we
focus our evaluations on real-world BID problem instances.
As shown by Michalowski and Knoblock [15], Constraint
Programming is an effective paradigm for solving geospatial
integration problems. With the techniques presented in this
paper, the ability to cast geospatial integration problems as
Constraint Satisfaction Problems (CSPs) is enhanced.

Furthermore, even though our constraint-inference frame-
work is only applied to the BID problem, the techniques
presented are general and can be applied across domains
(see [16]). One such domain is syntactic machine transla-
tion [11, 17]. In this domain, syntactic transfer rules are de-
rived from bilingual corpa and used to translate documents
from a base to a target language. The text in the document
being translated could determine which constraints apply.
This information would allow a translation engine to be op-
timized at run-time based on the the deduced rule set and
would open up the possibility of a more generalized transla-
tion engine for performing multiple bilingual translations.

Our future work aims to further improve the precision of
the inferred model. As mentioned in Section 3.1, we may
encounter situations where constraints are incorrectly clas-



sified as applicable. To handle these situations, we will study
support levels and how they can be used to avoid incorrect
inferences. Eliminating erroneous inferences will further im-
prove the quality of the returned solutions. Similarly, we are
working towards reducing the role played by a domain ex-
pert. In our current framework, this expert must define the
constraints that make up the constraint library. We would
like to eliminate this requirement by extending existing tech-
niques in learning constraints and using them to build the
constraint library automatically. Finally, we will apply our
approach to areas other than El Segundo to evaluate its ef-
fectiveness when presented with different sets of addressing
characteristics.
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