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Abstract. In this paper, we describe a system for managing the
hiring and assigning of Graduate Teaching Assistants (GTAs) to aca-
demic tasks based on the GTAs qualifications, preferences, and avail-
ability. This system is built using Constraint Processing techniques
and is operated through web-based interfaces. Various versions of
the prototype system have been in actual use since Fall 2001 and have
yielded a significant improvement in the quality and stability of the
final assignments in our department and a reduction of the workload
and frustration of the administrators involved in this task. This paper
describes the motivation and practical significance of thissystem, the
design and functionalities of its components, and the teaching and re-
search opportunities it has enabled.

1 INTRODUCTION

This paper describes a system we designed and implemented for the
management of Graduate Teaching Assistants (GTAs) [3] in the De-
partment of Computer Science & Engineering (CSE) of the Univer-
sity of Nebraska-Lincoln. The task is to assign GTAs, based on their
qualifications and availability, to academic tasks such as grading, su-
pervising labs and recitations, and teaching introductoryclasses. This
application is a critical and arduous responsibility that the depart-
ment’s administration has to drudge through every semester. Typ-
ically, every semester, the department has about 70 different aca-
demic tasks and can hire between 25 and 40 GTAs. The problem
is often tight and sometimes over-constrained. In the past,this task
has been performed by hand by members of the staff and faculty.
Tentative schedules were iteratively refined and updated based on
feedback from other faculty members and the GTAs themselves, in a
tedious and error-prone process lingering over 3 weeks. It was quite
common for the final hand-made assignments to contain a number
of conflicts and inconsistencies, which negatively affectsthe quality
of our program. For instance, when a course is assigned a GTA with
little knowledge of the subject matter, the course’s instructor has to
take over a large portion of the GTA’s job and the GTA has to invest
considerable effort to adjust to the situation. Moreover, students in
the course may receive diminished feedback and unfair grading.

We have built a web-based interface that streamlines GTA applica-
tions and allows candidates to specify their preferences for tasks on
a scale ranging from 0 (cannot handle) to 5 (best choice). Further, we
have implemented a number of functionalities, based on constraint
processing techniques, that assist the human manager in generating
solutions automatically or interactively. The modeling efforts started
in Spring 2001. Various versions of the prototype have been used ev-
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ery semester since Fall 2001. This system has effectively reduced the
number of obvious conflicts, with positive effects on the quality of
our academic program. It has also decreased the amount of time and
effort spent on making the assignment and gained the approval and
satisfaction of our staff, faculty and student body.

Section 2 describes the design of the system. Section 3 summa-
rizes the benefits of our endeavor, both for administration of the de-
partment and also for training students in AI modeling and research.
Finally, Section 4 and Section 5 draws directions for futureresearch
and concludes this paper.

2 SYSTEM ARCHITECTURE

The current system has the components shown in Fig. 1: web-
interfaces for data acquisition from a human manager and individ-
ual applicants, a relational database for storing the collected data,
a number of search algorithms, and the ability to generate reports.
Current developments include secure interfacing with university, col-
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Figure 1. System architecture.

lege and department databases, visualization widgets for supporting
the manager in decision making, and an integrated system foral-
gorithm management and collaborative strategies. The implementa-
tion is heterogeneous: the database is a MySQL database, theweb-
interfaces are implemented in PHP, and the search algorithms are in
Common Lisp and C++. Below we describe the implemented compo-
nents. Sections 2.1 to 2.3 focus on the input and manipulation of data
and have, for now, little to do with constraint processing. However,
they are essential for implementing and running the decision-making
algorithms and for designing intelligent techniques for data visual-
ization. Section 2.4 discusses the constraint model and theinteractive
and automated search algorithms.



2.1 MySQL Database Server

We designed a MySQL database to store the information entered
by the applicants and the manager. The schedule of classes issemi-
automatically retrieved from a departmental database. Allthe com-
ponents of the system use the database directly or indirectly (Fig. 1)
to store and retrieve data. We foresee a secure university-wide inte-
gration with (more or less) structured databases, which constitutes an
invaluable opportunity for extending the use of constraint-processing
techniques to database access security.

2.2 Web-interface for GTAs

Graduate students can at any time apply for consideration and up-
date their record. A deadline for receiving applications can option-
ally be enforced. Accounts are password protected. It is crucial that
the system not be restricted to applicants who already have accounts
in the department. Indeed, admitted graduate students fromforeign
countries need to be able to register on the system and input their
academic data and preferences over the Internet prior to arrival. The
interface offers four main modes.

The first one is a form for inputing the academic record of ap-
plicants, which was formerly collected by the department onpaper.
This includes the number of semesters supported so far, the level
of support, the current advisor, previous teaching experience, GPA,
English proficiency level, ITA qualification2, the list of course defi-
ciencies, etc. The second option displays the list of courses offered
during the semester and their meeting times. For each course, an ap-
plicant can specify his/her preferences: ‘5 Best choice,’ ‘4 Favorite,’
‘3 Qualified,’ ‘2 Able to handle,’ ‘1 Avoid if possible,’ ‘0 Cannot han-
dle.’ The student can check a box indicating that he/she is enrolled in
given course, which automatically sets up the preference value to 0.
In all other cases where the applicant specifies a preferencevalue
of 0, the system prompts the applicant to provide a justification for
the inability to handle the course. A preference value is setto 3 by
default to reduce the applicants’ burden in specifying preferences. At
the bottom of the window, a permanent legend reminds the students
of the meaning of the different preference values. The thirdfunc-
tionality provides students with direct access to the official course
descriptions. This is useful for incoming students who havenot yet
joined the department. Finally, the last functionality is an optional
survey, requesting applicants’ comments and their feedback on the
ease of navigation and data entry.

The first two modes (i.e., academic record and teaching prefer-
ences) display the time-stamp of the last modifications madeby
the applicant. Importantly, every time an applicant modifies his/her
record or preference selections, a message confirming the new data
input is sent via email to the applicant for his/her personalrecord.

2.3 Web-interface for manager

The interface for the manager permanently displays, in a horizontal
frame on the top of the page, five buttons representing the opera-
tional modes for (1) managing the GTAs, (2) managing the classes,
(3) performing interactive selections, (4) running searchalgorithms,
and (5) making server-level commands. These five modes are con-
trolled by a semester selector, set up by default to the most recent
semester in the database. When any of these 5 modes is selected,
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additional buttons for selecting functionalities specificto the mode
appear in a vertical frame in the left margin. These buttons are dis-
played as long as the mode is active.

The first mode allows the manager to manage the GTAs in the
system, i.e., those that have applied for the specified semester and
those that are hired for that semester. The list of GTAs considered at
any point in time can also be filtered by any number of predefined
selection criteria based on the applicants’ performance history via a
graphical template for selective queries. The manager has the ability
to hire, release, and specify the hiring percentage (i.e., GTA capacity)
of a particular applicant, and to view and generate PDF reports about
any number of the listed applicants. Further, the manager can send an
email message to any subset of these applicants. Finally, the manager
can delete the record of any applicant or add new ones.

The second mode allows the manager to manage the classes in a
semester, specifying course loads, their types (e.g., grading, lab, or
lecture), and various dependencies among courses. Fig. 2 shows a
screen shot of a page of the second mode. In this mode, the manager
can also enforce the assignments of GTAs to classes to satisfy some
requirement external to the system. For each class, a pull-down menu
lists all hired GTAs (regardless of whether they are available, appro-
priate for the task, etc.) from which manager can select. Such pre-
assignments are considered hard, can be enforced only through this
specific page, and cannot be undone by the interactive (Section 2.4.2)
or automated (Section 2.4.3) search facilities.

The third mode is currently thought to be the most useful by our
users because it assists the manager in making interactively individ-
ual or group assignments manually in an efficient way. The manager
remains in total control of the decisions, but is received ofthe bur-
den of keeping track of the consistency among decision. The system
offers a dual perspective: a task-centered view and a GTA-centered
view. We use constraint-based techniques to display the GTAs (al-
ternatively, courses) available and not for each course (alternatively,
GTA), and to propagate the effects of the manager decisions on the
remaining open decisions, see Section 2.4.2.

The fourth mode offers several search algorithms for automatically
solving the problem. These algorithms consider the pre-assignments
made in the second mode as hard constraints, but do not (yet) take
into account the interactive decisions made in the third mode. These
algorithms run independently whenever selected by the user.

Finally, the last mode provides the manager with system-level
functionalities such as access to the spawned processes.

2.4 Search algorithms

In this section, we describe the techniques of Constraint Processing
that we used or developed for this application. The details of these
techniques can be found in the listed references. The main contri-
butions encompass a constraint model (Section 2.4.1), the applica-
tion of consistency techniques for interactive decision making (Sec-
tion 2.4.2), implementation of various heuristic and stochastic search
strategies (Section 2.4.3), and characterization of the relative perfor-
mance of these strategies under our particular setting (Section 2.5).

2.4.1 Constraint-based model

The task is to assign GTAs according to various criteria (considered
as hard constraints) to academic tasks. The problem is almost always
tight and often over-constrained, but this is not known a priori. The
goal is to cover as many classes as possible while maximizingthe



Figure 2. Screen shot of the page that allows the manager to set-up class load and types.

preferences of the GTAs. Because the hard constraints cannot be bro-
ken, the problem cannot be modeled as a MAX-CSP [4]. We choose
to express the courses as the variables of a Constraint Satisfaction
Problem (CSP) and the GTAs as the values that these courses may
take. We express the constraints that restrict the acceptable assign-
ments as unary, binary, and non-binary constraints. Our goal is thus
to find the longest partial and consistent solution while maximizing
the GTA preferences. We tested various optimization criteria, such
as maximizing the minimal preference in a solution, maximizing the
average or geometric mean of preference values, etc. Details of the
modeling can be found in [5, 8]. We also proposed to reformulate
some of the non-binary constraints into binary ones and evaluated
the benefits of this reformulation [6, 7].

2.4.2 Interactive decision making

The manager can adopt one of two dual perspectives on the prob-
lem and switch between them: assigning GTAs for courses or vice
versa. Fig. 3 shows how the appropriate GTAs (i.e., those that have
passed node consistency) are listed to the user. The upper portion of
the pull-down displays the GTAs that can be assigned to the course
without reservation. In terms of the CSP, these are the values in the
current domain of the variable. The lower portion lists the GTAs who
could potentially be assigned but are ‘busy’ in assignmentsand those
who can be relieved. These are the values eliminated from theinitial
domain of the variable by constraint propagation. In each portion,
and the GTAs are listed in decreasing preference order, as a primary
criterion, then in increasing lexicographical of their last name, as a
secondary criterion. Next to the name, the ‘current’ capacity of each
GTA is displayed (which is the hired capacity of the GTA discounted
by the load of his/her other assignments). Every time a new assign-
ment is made, a full arc-consistency algorithm is executed to filter

Figure 3. Checking available/busy GTAs for a course.

the domains of the unassigned variables. Assignments can also be
undone or changed. The domains of all the variables are then recom-
puted from scratch while maintaining the intermediate selections.
We decided against using a dynamic arc-consistency algorithm [2]
to avoid the use of additional data structures and because the so-
lution adopted is quite efficient in practice. Naturally, this decision
may need to be reconsidered if the application size or characteristics
are modified. This functionality will be described in detailin [14].

2.4.3 Automated search algorithms

We have developed and tested various search strategies, which we
summarize below. Using the 8 data-sets (pertaining to different aca-



demic semesters) of the same problem and comparing the perfor-
mance of search strategies for these problems was particularly in-
structive as it allowed us to recognize known features and identify
new characterizations of these search procedures, shown inTab. 1.

Heuristic backtrack search: Because the problem is often over-
constrained, we changed the backtrack mechanism of depth-first
search with forward-checking to force search to pursue a partial solu-
tion even when the domains of some future variables are wipedout.
We tested various ordering heuristics for variables and values and
found that both the dynamic variable ordering with the leastdomain
heuristic and the minimum ratio of domain size to degree yielded the
best results. Although BT is theoretically sound and complete, the
size of the search space (around 60 variables and 30 values) makes
such guarantees meaningless in practice. Fig. 4 illustrates thrashing,
where search never recovers from early bad decisions. Indeed, the
shallowest level of backtrack achieved after 24 hours (26%)is not
significantly better than that reached after 1 minute (20%) of search.
More details can be found in[5, 8, 7, 10].
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Figure 4. BT search thrashing in large search spaces.

Stochastic local search: Our local search (LS) is a hill-climbing
search using the min-conflict heuristic for value selection[13]. It
is documented in [17, 16]. It begins with a complete assignment
(not necessarily consistent) and tries to improve it by changing in-
consistent assignments in order to reduce the number of constraint
violations. We propagate the effect of consistent assignments over
the domains of the variables with inconsistent assignments. This de-
sign decision allows us to effectively handle non-binary constraints.
We implement local search in a greedy fashion in the sense that we
do not backtrack over consistent assignments. Moreover, weapply a
random-walk strategy to escape from local optima [1]. With aproba-
bility (1−p), we choose the value of a variable using the min-conflict
heuristic, and with probabilityp we choose this value randomly. Fol-
lowing the indications of [1], we choosep = 0.02. Further studies on
the choice of the value ofp for the GTA problem are reported in [16].
Furthermore, we use random restarts to break out of local optima.

Multi-agent search (ERA): Liu et al. [12] proposed the ERA
(Environment, Reactive rules, and Agents) algorithm, a multi-agent-
based search for solving CSPs. Each variable is an agent. Theposi-
tion of an agent corresponds to the value assigned to this variable.
The environment records the number of constraint violations of each
agent’s position. An agent moves according to its reactive rules to
occupy a position where no constraint is broken. A solution is found
when all agents are in such positions. On the surface, this technique
appears to be a variation of local search. This algorithm acts as an
‘extremely’ decentralized local search, where any agent can move
to any position, possibly forcing other agents to seek otherposi-
tions. Our experiments uncovered the ERA’s immunity to local op-
tima [17, 16]: it is indeed the only technique that consistently solved
all tight problems. We also uncovered the weakness of ERA on over-
constrained problems, where a deadlock phenomenon undermines its
stability resulting in particularly short solutions. However, the dead-
lock phenomenon is useful to identify conflicts in a compact manner.

Randomized backtrack search: Gomes et al. [9] proposed to
avoid the thrashing of BT by introducing randomness in the variable
selection heuristic and using a restart strategy. This allows search to
explore wider areas of the search space. Using a random ordering of
variable-value pairs, we implemented the Randomization and Geo-
metric Restarts (RGR) strategy of Walsh [15]. According to RGR,
search proceeds until it reaches a cutoff value for the number of
nodes visited. The cutoff value for each restart is a constant factor
that is larger than the previous run. The initial cutoff is equal to the
number of variables. We have introduced a simple by effective im-
provement to RGR: Randomization andDynamicGeometric Restarts
(RDGR) [10, 11]. It operates by not increasing the cutoff value for
the following restart whenever the quality of the current best solution
is not improved upon. When the current restart improves on the cur-
rent best solution, then the cutoff value is increased geometrically,
similar to RGR. Because the cutoff value does not necessarily in-
crease, completeness is no longer guaranteed. This situation is ac-
ceptable in application domains (like ours) with large problem size
where completeness is, anyway, infeasible in practice. Smaller cut-
off values result in a larger number of restarts taking placein RDGR
than RGR, which increases the probability of finding a solution. We
have compared the performance of RDGR to that of RGR on the data
collected in our project over a wide range of running times and using
the cumulative distribution and probability density functions of the
solutions. Our investigations have shown that RDGR clearlydomi-
nates RGR on the GTA assignment problem. We are currently testing
it on randomly generated CSPs.

2.5 CHARACTERIZATION & PRACTICAL USE

We noticed that when the result of an algorithm (e.g., ERA) isa used
as a seed to another algorithm (e.g., BT), the resulting solution has
better quality than the two algorithms used independently.We are
now studying how to integrate the various search mechanismsin
a collaborative manner by exploiting and extending the knowledge
about the behavior of these algorithms summarized in Tab. 1 (e.g.,
completeness, soundness, response time, characteristic performance
on solvable and over-constrained problems, stability of solutions, and
quality of solutions).

General Observations
ERA: Stochastic and incomplete.
LS: Stochastic, incomplete, and quickly stabilizes.
RDGR: Stochastic, incomplete, immune to thrashing, produces longer
solutions than BT, immune to deadlock, reliable on instances & immune
to local optima, but less than ERA.
RGR: Stochastic, approximately complete, less immune to thrashing
than RDGR & yields shorter solutions than RDGR in general.
BT: Systematic, complete (theoretically, rarely in practice), liable to
thrashing, yields shorter solutions than RDGR and RGR, stable behavior
& more stable solutions than stochastic methods in general.

Tight but solvable problems
ERA: Immune to local optima, solves tight CSPs, gives best results.
LS: Liable to local optima, fails to solve tight CSPs even with
random-walk & restart strategies.
RDGR, RGR: RDGR clearly dominates RGR, but is less good than ERA

Over-constrained problems
ERA: Deadlock causes instability and yields shorter solutions.
LS, RGR, RDGR, BT: Finds longer solutions than ERA.
RDGR: Gives best results.

Table 1. Empirical characterization on the GTA problem.



Currently, the user decides which search mechanism to execute,
the search processes running independently. On the collected data
sets, the response time of interactive search is immediate for the hu-
man user, but that of automated search is not. Our tests showed that
a running time from 5 to 10 minutes yields as good solutions ascan
be expected from all search algorithms. Although some of thesearch
algorithms are theoretically complete, the quality of the solutions do
not appreciably improve with time. Since we started using the system
in August 2001, the manager typically generates first solutions with
each of the automated searches, then uses these solutions asdrafts
for building up the final solution with interactive search.

3 BENEFITS & IMPACT

The task of assigning GTAs to tasks is particularly difficultfor hu-
mans because of all of the hard constraints about students’ avail-
ability, qualification, and load that one has to keep track of. In our
department, it is acknowledged to be the ‘most difficult dutyof a
department chair.’ On the other hand, the manager has plentyof in-
formation about the GTAs, the courses, and the teaching faculty at
his/her fingertips. It is illusive to attempt to formally model such con-
straints because they are typically subjective and infinite. Also, they
would complicate the problem solving without necessarily improv-
ing the quality of the solutions.Fortunately in our particular setting,
computers seem to be most effective in exactly the same taskswhere
humans fail(e.g., keeping track of hard constraints),and vice versa
(e.g., quickly evaluating alternatives and making compromises) The
fact that our system keeps the human user in the decision loopwhile
removing the need for tedious (and error-prone) manual handassign-
ments explains the success of the system in our setting.

Initially, the entire process was carried out manually and on paper.
The system, with barely a few functionalities, was deployedwithin a
few months. Functionalities were added as they were identified, of-
ten in a need-driven manner and in close collaboration between the
designers of the system and its users. However, the positiveeffects
of the system on the GTA assignment task were immediately notice-
able. Indeed, our endeavor has allowed the department to gradually
redesign its processes for the data acquisition mechanisms, the GTA
selection and hiring procedures, and the assignment policies. The de-
partment is currently working towards standardizing and streamlin-
ing the entire process.

Ours was an ad-hoc approach to system development, and we did
not carry out a formal longitudinal study of usability and usefulness.
However, anecdotal evidence of the value of the system is demon-
strated in the form of continued financial support for one student,
overjoyed satisfaction of the staff (relieved from handling applica-
tion forms and massive paperwork), and enthusiastic anonymous on-
line reviews from the students. Invariable, assignments are now made
quickly (from a 3-week duration down to a day or two), they aremore
stable, and, above all, they are more satisfactory to the course instruc-
tor, the GTAs, and the students in the classrooms.

4 FUTURE WORK

Although we already have a working system, we are far from com-
pleting the project and implementing the ideas that are continuously
popping up. We constantly review the functionalities and the perfor-
mance of our prototype and adapt it to changing department needs.
The main areas we plan to address next are the following: designing
hybrid search procedures that work seamlessly together, enabling the
manager to compose interactively partial solutions built manually or

with search, allowing the manager to participate actively in the search
process and monitoring and guiding its progress, and finallydevel-
oping visualization widgets able to display pertinent statistics about
a problem as solutions are being built.

5 CONCLUSION

We have developed an interactive system for hiring and managing
graduate teaching assistants. Our prototype system has integrated
interactive-selection and search capabilities, thus alleviating the bur-
den of the manager and allowing the quick development of stable
solutions. This system has also paved avenues for research work in
Constraint Processing and other related areas.
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