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Abstract. Neighborhood Interchangeability (NI) identifies the ealént values
in the domain of a variable in a Constraint Satisfaction Rnob(CSP) by con-
sidering only the constraints that directly apply to thealale. Freuder described
how to compute the NI values using the discrimination tre€)([1]. The gener-
alization of DT to non-binary CSPs is not straightforwarddse the constraints
that apply to a given variable have different scopes anekariin this paper, we
introduce a methdidfor computing the NI values in the presence of non-binary
constraints. Then, we demonstrate the advantages of corgpghese NI values
dynamically during backtrack search, in a process we calhthic bundling. As
for the binary case [2, 3], we show that in addition to yietgdarobust solutions
and a compact representation of the solution space, dyriaumidling can sig-
nificantly improve the performance of the search processcfwis a fortunate
and unexpected side-effect). On randomly generated prahlthe performance
improvement is particularly significant around the crossrgpoint. In [4], we
discuss the advantages of applying these techniques towajin computation
in databases.

1 Introduction

Many problems in engineering, computer science, and maneageare naturally mod-
eled as Constraint Satisfaction Problems (CSPs), whichrageneral NP-complete.
Search remains the ultimate mechanism for solving theddgares. Glaisher [5], Puget
[6], Ellman [7] and many others proposed exploitoieclaredsymmetries specific to a
class of problems to improve the performance of search. diitiad to exactsymme-
tries, Ellman also considered necessary and suffigigmtoximation®f symmetry rela-
tions. While the above approaches focused on explodtegiaredsymmetry, our study
considers thaliscoveryand use of symmetries. The symmetry mechanisms we study
are based on the notions of local value interchangeabififreuder [1] and domain
bundling of Haselbdck [8], which groups equivalent valirea bundle (or equivalence

3 The algorithms and their application to databases are thjectof a pending patent.



class). It was incorrectly assumed that bundling, appliatically (i.e., prior to search)
and, a fortiriori, dynamically (i.e., during search), i®toostly and not worthwhile for
finding a single solution. Beckwith et al. [2] and Choueinddbavis [3] showed how
to implement bundling to yield multiple and robust solusdar less effort than needed
for finding a single solution. (This result holds theordticéor finding all solutions,
and empirically for finding one solution.) They also showhkdttdynamic bundling
is significantly less expensive and more effective tharicstatndling. However, their
techniques were limited to binary CSPs.

Although most research in constraint satisfaction focusebinary CSPs, many
real-life problems are more ‘naturally’ modeled as nonaoynCSPs. The focus on bi-
nary CSPs has so far been tolerated because it is alwaybledssprinciple to reduce a
finite non-binary CSP to a binary one [9, 10]. Research onliinary constraints is still
in its infancy and the traditional attitudes on this issue raow being challenged [11]:
it appeared that sometimes it is more effective to operata@non-binary encoding of
the CSP than on its binary reduction.

In this paper we introduce an efficient technique for burgdtion-binary CSPs and
demonstrate its effectiveness on toy and randomly-gese@bblems. Even though
such problems lack the redundancy one expects to find invedt applications, mak-
ing them not particularly amenable to bundling, our empiniesults show that bundling
remains beneficial. Our contributions are:

1. An algorithm for computing the NI values of a CSP variabikeeg any subset of
the constraints that apply to the variabdgardless of their arities

2. The integration of this mechanism with backtrack seandtich we call dynamic
bundling, for solving non-binary CSPs.

3. Extensive experiments that demonstrate the benefitsmardic bundling.

This paper is organized as follows. Section 2 states thevatains and background of
our work. Section 3 shows how to compute NI values in the pres@f non-binary
constraints and to integrate bundling with search usinglmoary forward-checking.
It also illustrates with an example how solutions and noegoare bundled. Section 4
reports our experiments and analysis. Finally, Sectionrielewles this paper and gives
directions for future research.

2 Motivation and Background

Beckwith et al. studied dynamic bundling in the context afdsy CSPs. They have
established that dynamic bundling is guaranteed to nevarmore than no-bundling
when seeking all solutions. In particular, they establistieat, for all solutions, the
number of constraint checks and the number of nodes visitelyhamic bundling may
never exceed the corresponding numbers of search withadtiibg [2]. Choueiry and
Davis showed empirically that these results hold when segttie first solution [3].
Those results prove that dynamic bundling (primarily usadihding multiple, robust
solutions) actually provides an effective means to imprea@rch performance, drasti-
cally abating the peak cost of search at the phase transfios counter-intuitive result
is explained by the fact thatynamic bundling is capable of bundling no-gopdisfined



as partial solutions that cannot yield complete solutidimis, dynamic bundling ap-
pears as a double-edged sword that reduces thrashing dednch. Our goals here are
to extend neighborhood interchangeability to non-bing8€ and to establish the ben-
efits of dynamic bundling, especially in the region of the ggh&ransition. We restrict
ourselves in this paper to presenting the methods and éwajuaem on randomly
generated problems. However, we have already shown the@ngaljes in the context
of databases [4]. Further, we believe that the extensionmehinary case will be more
useful than the binary one, which proved beneficial in cas®et reasoning [12] and
local search [13].

2.1 Constraint satisfaction problems

A Constraint Satisfaction Problem (CSP) is definedmby= (V, D, C) whereV= {V;}
is a set of variablesD= {Dy,} the set of their respective domains, afich set of
constraints that restrict the acceptable combination lofegfor variables. Thecopeof
a constraint is the set of variables to which the constraiptias, and itarity is the size
of this set. A constraint over the variablg€s V;, .. ., V}, is specified as a set of tuples,
subset of the cross-product of the domains of the variabléts iscopeCy;, v, ...,

={((Vi as), (V; aj), ..., (Vi ar))} wherea, € Dy, and(V; a;) denotes a variable-
value pair (vvp). We assume that the domains of the variaske§inite. Solving a CSP
requires assigning a value to each variable such that adit@ints are simultaneously
satisfied. The problem NP-complete in general. A CSP is often represented as a graph,
or constraint network. In this graph, a node representsiablarand is labeled by the
corresponding domain. A non-binary constraint is represskas a hyper-edge linking
the nodes in the scope of the constraint. For sake of clardyepresent a hyper-edge as
another type of node connected to the variables in the sddpe constraint, as shown

in Figure 1. The constraint definitions for this example aveigin Figure 2. We use the
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Fig. 1. Example of a non-binary CSP.
Fig. 2. Constraint tables.

following parameters to assess the worst-case complekéy algorithm applied to a
CSP and for generating random instaneeaumber of variables; maximum domain
size,d node degree;, number of constraints of arity, p,, = =% constraint probability

k
of arity k, andt constraint tightness defined as the ratio of the number aflidiged
tuples over the number of all possible tuples.



CSPs are typically solved using depth-first search with tsacking (BT). In this
paper, we use forward checking (FC) and order the varialyleardically during search
according to the least domain heuristic. Depth-first seéoctbinary CSPs proceeds
by iteratively choosing a current variablé and instantiating it, i.e. assigning to it a
value taken from its domain. The process repeats until albbbes are instantiated.
Uninstantiated variables are called future variables,theit set is denoted by;. FC
propagates the effect of instantiating the current vagislyl removing values inconsis-
tent with e from the domains of the future variables adjacent’tolf the instantiation
does not wipe out the domain of any variablelp, V. is added to the set of instanti-
ated variables (which we call past variables and deno?g, aand search proceeds to
the next variable determined by the ordering schema usébr®ise, the instantiation
is revoked, its effects are undone, and an alternativeritiataon to the current variable
is attempted. When all alternatives fail, search backsdokhe previous assignment,
and revokes the assignment done at this level. The procgsateeuntil one or all so-
lutions are found. At any point during search, the path fromrpoot of the tree to the
current variable is a set of vwpgsV; a;)} for the variables/; € V, and their instan-
tiations a;. Search on non-binary CSPs proceeds as described abov€beqgkires
particular attention as discussed in Section 3.3. We cadl-goodany combination of
variable-value pairs that cannot be extended to a consispution.

2.2 Interchangeability

Interchangeability is about the ability to recover one sotuto a CSP from another.
When solutions to a CSP are given, one can always define a ntgapptween the so-
lutions such that one solution can be obtained from anotiitbowt performing search.
In the broadest sense, thisfimctionalinterchangeability [1]. We address here a re-
stricted form of interchangeability: the interchangei&bibf values in the domain of a
single variable. This type of interchangeability does rmtar the permutation of val-
ues across variables, which is an isomorphic interchanlifgaBelow we recall some
forms of interchangeability relevant to our work.

Definition 1. Full interchangeability (FI) (Freuder [1]Valuesa, b € Dy are FI iff
every CSP solution involvingremains a solution whehis substituted for, and vice
versa.

Checking all the solutions of the CSP in Figure 3 we find thatvhluesd, ¢, and f
are fully interchangeable fdr,. Computing full interchangeability may require finding

Fig. 3. A binary CSP. Fig. 4. Partitioning Dy,

all solutions and hence is likely to be intractable. Freydgidentified a form oflo-



cal interchangeability, calledeighborhood interchangeabilifiNl), that is a sufficient
approximation of full interchangeability.

Definition 2. Neighborhood interchangeability (NI) (Freuder [1Q)valuea € Dy is
neighborhood interchangeable with a value Dy, iff for every constraintC' incident
to V, a andb are consistent with exactly the same valugs| (a, x) satisfies”} = {x
| (b, x) satisfies”'}.

NI is a sufficient, but not a necessary condition for Fl. Iraiéa the CSP of Figure 3,
only values andf are NI forV,; whereas values, f, andd are Fl forVs. Algorithm 1,
introduced in [1], computes the NI values for a variall®y building a discrimination
tree (DT).

Input: V/

current-node— Create the root of the discrimination trise each valuey € Dy do

for each variableV; € NEIGHBORYV') do

for each valuav € Dy, consistent with for V' do

if current-nodehas a child node with ‘ (V; w)’ then

| current-node— n

end

else
Generate: a node with {V; w)’ and make it a child oturrent-node
current-node— n

end

end
Add 'V, {v}’ to annotation ofcurrent-node
current-node— root of the discrimination tree

end

end
Output: Root of discrimination tree

Algorithm 1: Algorithm to create a DT of a variabl&.

Figure 4 shows the discrimination tree generated/foof the CSP of Figure 3. In
this tree, the nodes represent variable-value pairs in ¢ighborhood ofl;. Further,
some nodes are annotated with values ftb¥y, these annotations form a partition of
Dy, . All the variable-value pairs that appear in a path from thet of the tree to an
annotation are consistent with the values appearing thetation. The complexity of
this procedure i©)(n - a?). It is important, in this procedure, that variables and galu
be ordered in a canonical way.

Benson and Freuder used NI to improve search [14]. A weaker & NI, called
neighborhood interchangeability according to one conisirdNI ), was also used in
search by Haselbodck [8]. This search process yields solsitwvhere some variables
have a set of equivalent values, called a bundle. Both papenpute interchangeability
setsprior to search. We call such strateg#atic bundlingFigure 5 shows a search tree
for the example of Figure 3 without bundling (left) and wittatic bundling (center).



Freuder [1] noticed that computing interchangeabilitying problem solving results
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Flg. 5. Search with no, static, and dynamlc bundling.

in a weak type of interchangeabilitgynamic interchangeabilityBeckwith et al. [2]
and Choueiry and Davis [3] established that recomputirgyattangeability partitions
duringsearch is always beneficial: it yields larger bundles andaes the search effort.
We call the strateggynamic bundlindDynBndl). Figure 5 (right) shows the tree gen-
erated by dynamic bundling. The computational savings eamdzed to (1) bundling,
(2) factoring out no-goods, and (3) reusing informatiomirihe discrimination tree for
FC. Further, they showed that, in comparison to dynamic lgdstatic bundling is
prohibitively expensive, particularly ineffective, andoaild be avoided [3].

The Cross Product Representation (CPR) of Hubbe and FrEiis]gields the same
resulting bundles as dynamic bundling, but it requires nspce and does not bundle
no-goods. It operates by doing forward checking for evelyevaf the current variable,
comparing the CSPs induced on the future variables, andlvediing the values of the
current variable yielding the same induced CSPs. Hence, tizeBssarily visits more
nodes than DynBndl, even though the difference is polynbyti@unded.

2.3 Phase transition

Cheeseman et al. [16] presented empirical evidence, foegamdom combinatorial
problems, of the existence of a phase transition phenomataieritical value (cross-
over point) of an order parameter. They showed a significgaerease in the cost of
solving these problems around the critical value. They alsowved that the location
of the phase transition and its steepness change with ta@&ithe problem. Because
problems at the cross-over point are acknowledged to beapiiidtically the most dif-
ficult to solve, empirical studies to compare the perforneasfalgorithms are typically
conducted in this area.

3 Dynamic Bundling for non-binary CSPs

In this section we first describe how to compute NI values étesence of non-binary
constraints. Then, we discuss how non-binary constranetsipdated for FC. Finally,
we describe the integration of the computation of intergjeaility with search, which
we call dynamic bundling. We also illustrate the compactbthe solution space and
the factoring of no-goods.



3.1 Neighborhood interchangeability for non-binary constaints

No technique is reported in the literature for bundling fmmary CSPs. Here we report
for the first time how this can be done by extending the binasecThe idea is to iden-
tify the variable-value pairs in the neighborhood of a vialéd’” consistent with each
value inDy . The values with ‘the same neighborhood’ form an equivadasiass. The
difficulty with non-binary constraints is that the consirtaihave different arities and the
‘neighborhoods’ of two values are difficult to compare. Timakes the transition from
binary to non-binary CSPs non-trivial because one discréion tree cannot represent
tuples from all the constraints involved. Our techniquedsdd on building a separate
discrimination tree foeachof thed constraints that apply to the variable. We call such
a tree anon-binary discrimination tre€nb-DT). Below, we introduce two processes.
The first partitions the domain of the variable by buildingl@embining the applicable
nb-DTs; and the second determines the domains of the neaigigbeariables consis-
tent with each set of the partition. These two processessae ior dynamic bundling
(Section 3.3).

Finding the domain partition. The first process uses Algorithm 2 to build the nb-
DT for a variableV and an associated constraditthat applies to it. Here and
correspond respectively to the selection and projecti@raiprs in relational algebra.
An nb-DT is created for each of thieconstraints applying ofr.

Input: V, C
current-node— Create the root of the discrimination tree
S« scope() \ {V}
for every valuev € Dy do
for every tuplet = ((V; as), (Vj aj), ..., (Vi ar)) € C do
if ov=v(t) then
if current-nodehas a child node with ws(t) then
| current-node— n
end
else
Generate: a node withrs(t) and make it a child ofurrent-node
current-node— n
end

end

end

Add ‘V, {v}' to the annotation oturrent-node
current-node— root of the discrimination tree

end
Output: Root of discrimination tree

Algorithm 2: Algorithm to create a nb-DTY(, C)

Figure 6 shows the non-binary discrimination tree (nb-DoF)the constraints inci-
dent toV in the example of Figures 1 and 2. The worst-case time corniplabgorithm
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Fig.6.nb-DTs forV and C1, Cs, respectively.

is linear in the size of the constraint, which depends on thaln size of the vari-
able, the tightness, and the arity of the constraint. Theptexity for buildingd such
nb-DTs is thereforé(d - a*+! - (1 — t)). Every node of the nb-DT stores the tuple it
represents, a list of nodes connected to it, and an annotatich is by default empty.

A pointer called theurrent-nodes maintained and it points to the last node used by the
algorithm. Initially, thecurrent-nodepoints to theRoot The algorithm builds the tree
choosing one value from Dy and processing each tuple@fcorresponding tdV” v)

as follows: When the projected tuple matches any of the afildes of thecurrent-
node thecurrent-nodemoves to the matching node. Otherwise, a new node is created
and added to theurrent-nodés children list and theurrent-nodemoves to the newly
created node. After processingae Dy, v is added to the annotation of ticarrent-
nodeand thecurrent-nodemoves back to thRoot Therefore, two nodes are connected
if the tuples of each of these nodes lie on the path to a commootation value. The
trees generated for each of the constraints are then cothbméllows to determine
the partition ofDy:

1. Traverse each tree from the root to each annotaticemd construcP; by collect-
ing the nodes on the path. Form a list= (P;, A;) of the particular path and the
corresponding annotation, and a list = {/;} of these lists for each nb-DT. For
the example of Figure 6, we have:

(a) Forthe nb-DT of’;:

— L =((((A 1), (B3)),((A3), (B 3))) {1,2}),
- 12 =((((A3), (B 2))), {5, 6}),
- l3=((({A 1), (B1)), ((A2), (B 2)) {3, 4}).
- ThUS,L1 = (ll,lg,lg)

(b) For the nb-DT ofCs:

- L =((C3)). {1, 2)),

- 15 =(((C'ni1))), {5}),

- ls=((((C'2))). {3, 4}),

= Iz =((((C 2))), {6}), Thus,L2 = (I, 5, s, l7).
These lists are collected ih= (L1, Lo, ..., Lg).

2. Apply Algorithm 3 toL andV/, as input parameters, to intersect the annotations
A; obtained from each tree in order to compute the domain fmartitf Dy,. The
worst-case time complexity of this algorithm @3(d? - a*). For the example of
Figure 6, the algorithm returdq1, 2}, {3, 4}, {5}, {6} } as the partitioned domain
of V. The resulting sets are the equivalence clagsex the domain of the variable
(hereDy) given the constraints that apply to it (he€d, andC5).



Input: L,V
dom-values— domain ofV/
partitioned-domain— ni |
for every valuev remaining indom-valuesdo
select-path+annot— An [; from everyL; € L for whichv € ANNOTATION(/;)
annotation— Intersect annotations in tieelect-path+annot
Add annotationto partitioned-domain
dom-values— dom-values, annotation

end
Output: partitioned-domain

Algorithm 3: Algorithm to intersect annotations.

Computing the new domains of neighboring variables.The second process exploits
these trees to determine the values of the neighborhoBdoinsistent with each parti-
tion of Dy, . For a given partitiorE;, we identify the path$ P; } in each nb-DT such that
E; C A,. For avariableX connected td/, we project each patR; on X . Intersecting
the results of the projections gives us the subsé gfthat is consistent with the values
in E;. (This would be the new domain df obtained after forward checking had we
assignedr; to V during search.)

Avenues for improving performance. In an effort to reduce the overhead for comput-
ing bundles, we have included in our implementation a meshafor automatically
‘switching off’ some operations for partitioning the domaif a given variablé” when

it becomes clear that all partitions are necessarily stogke This happens in two sit-
uations. When any nb-DT of | results in annotations exclusively made of singleton
elements (see Algorithm 2). In this case we can safely swifthundling for building
the nb-DTs for the remaining constraints that apply to théalde V. Another case is
when the intersection of the annotations returns singgefsee Algorithm 3). In prac-
tice, we implement this switching off mechanism as folloW& force Algorithm 2 not
to check for matching child nodes, but to always create nesleadecause the infor-
mation in the nb-DTs is useful for filtering the domains of thieure variables. Another
avenue for improvement is by sorting the constraint defingi In [4] we showed a
space efficient, sort-based bundling strategy applicabdiatabase join queries. We are
currently exploring ways to reduce the complexity of Aldgbms 2 and 3 by exploring
sort-based algorithms suitable for CSPs. Sort-based migtiave better time and space
complexity than Algorithms 2 and 3, but they require the ¢@ists to be sorted. When
a dynamic variable ordering is used for solving a CSP, saseld methods require fre-
quent re-sorting. There is thus a trade-off to be made fraanbinefit of sort-based
methods in conjunction with dynamic variable ordering imrsh for solving CSPs,
which needs to be further investigated.

3.2 Updating non-binary constraints for forward checking

Independently of bundling, two issues arise when applyi@gté non-binary CSPs:
(1) choosing the subset of constraints to take into accaeunat,(2) updating their defi-



nitions to reflect past instantiations and domain prunikigsadopt the strategy called
nFC2 [11], where the constraints considered are the ones thét tipfhe current vari-
able and at least one future variable.

The update of a non-binary constraint according to pasaimigtions amounts to
intersecting the original definition of the constraint witte cross product of the (up-
dated) domains df, and future variables. This operation is time consuming acpce.
We propose here an equivalent, more efficient implememtétiat uses a linear number
of selection and projection operations. I&tbe the current variable and, one such
constraint (see Figure 7). Let scopkf = {V,} U {V.} U {V}}, where{V, } C V, and

Vo)

Instantiated variable ]
C Unstantiated variablg )

e

Fig. 7. Partially instantiated non-binary constrairdt...

{W} C V;. The domains of variables ifi.} U {V;} might have already been filtered
by FC, and certain tuples ifi,, might have become invalid. Thus, we need to select the
tuples ofC,, that have survived the filtering by FC according to instaiuies of the past
variables. The selected tuples must satisfy the condit{@sV; a;) for v; € {V,,} and

a; the bundle instantiated 13, and (2)a; € Dy, for V; € {V.}U{V,}, whereDy, are
filtered domains. We denote this operatiﬁﬁf((?m). In order to compute the updated

constraint, we projeaty,“ (C;) on{V.} U {V3},

C’; = W{vc}u{vb}(agf(cz))- 1)

The way non-binary FC without bundling is implemented afieto a large extent,
the number of constraint checks and CPU time spent to soh@&Ra The updated con-
straint of Equation (1) is valid for all values iy, . It is wasteful to discard the result
of this computation after instantiatifig.. If the instantiation is not consistent and the
search backtracks to the variable th&fis computed again. To avoid this expensive
computation we store eacff, associated with/.. Note that by doing so we level the
playing field for the two algorithms being compared. Thus,empirical results reflect
the gain due purely to bundling and exclude the gains fromattdtional nb-DT data
structure.

3.3 Dynamic bundling

Search using dynamic bundling operates by assigning a éuadil., and propagating
the effect of this decision on the future variables. The besmof V. are obtained by
applying the first process of Section 3.1 (i.e., finding thendm partition) to the sub-
set of the constraints ovi. determined according ©FC2. The constraints passed to
Algorithm 2 are computed using Equation (1). The effecthaf instantiation are then
propagated using the second process of Section 3.1 (ireputing the new domains
of neighboring variables).



Figure 8 shows partially the non-bundled search of tree@&ttample of Figures 1
and 2 with variable orderingV, A, B, C, D}. Figure 9 shows the dynamically bun-
dled search tree. The domain Bfis partitioned as discussed in Section 3.1 &b

First solution Solution bundle

Fig. 8. Search tree without bundling. Fig. 9. Search tree using dynamic bundling.

assigned the bundlgl, 2}. FC propogates this instantiation and the domaind 0B,
andC are set to{ {1}, {3}}, {3}, and{3}, respectively. Next, the domain partitions of
A are computed. We find the two domain values, 1 and 3, to bechegeable and
A is instantiated with 1, 3}. On propagating this instantiation, the domain/how
becomes1}. Next, the search proceeds to instantiBtevith the only domain value
{3}. The instantiation results in the annihalation of the dentdiC', and search back-
tracks. There are no values remaining in the domainB afnd A. Hence, the search
backtracks td/. Note here thatl was assigned a bundle of size 2. In the case of non-
bundling search, another value framwill be tested and extra nodes visited only to
detect failure. By clubbindg1, 3} of A together, bundling saved visiting nodes Bf
Further savings result because bundling detects that thdid{d, 2} is a also no-good.
The gains due to bundling multiply those due to bundling od, thus illustrating the
gains of no-good bundling.

On instantiatingl” with {3, 4}, search is able to assign values to the remaining
variables of the CSP and finds a solution{@® {3,4}), (A {1}), (B {1}), (C {2}),

(D {1})}. From this example, we see that dynamic bundling necegsasits less
nodes by bundling solutions and no-goods. Search with nopdisits 8 nodes whereas
search without bundling will visit 15 nodes to find a solutitMoreover, bundling pro-
vides two solutions instead of one at a lower cost.

The use of a MAC-like, full lookahead schema [17] necesgarforms a better
filtering of the domains of the future variables. While thiayrincrease the number of
constraint checks, it would yield ‘fatter’ solution bundl&hus improving bundling),
and reduce of number of nodes visited during search. Howeven with MAC, our
technique does not guarantee that the resulting bundlingaismal [18]. More gen-
erally, dynamic bundling, while it partitions the set of sbns (i.e., every solution
appears in exactly one bundle) does not guarantee theygahtite partition, its opti-
mality, or its uniqueness.



4 Experiments

The benchmark problems usually used for symmetric CSPsamiitable for bundling

for the following reasons. (1) Most exhibit only symmetribst are permutations of
values over variables. (2) Most have small domains (e.gqlézm), which are not
amenable to bundling. (3) Most are modeled using a uniquleadjlconstraint of ex-

ponential size. Defining the constraint in extension am®tmsolving the problem and
is likely intractable. (4) Finally, for coloring problemsindling can be done only in the
case of list-coloring problems (typically used to modebrase allocation problems).
However, such bundling can be easily computed without nis-88'shown in [19].

For finding all solutions and using the same look-aheadesjyatduring search,
dynamic bundling (DynBndl) is guaranteed to visit no morelem and do no more
constraint checks than backtrack search without bundtiogvever, the bundling effort
may increase the CPU time, which could be a concern. For firtthia first solution, the
dominance of dynamic bundling over non-bundling is in gaheot guaranteed even
in terms of nodes visited and constraint checks. In ordessess the time overhead
for bundling and its impact on the search effort, we complaeenbedian values of the
following metrics for DynBndl and FC on radomly generatedigems: the CPU time,
the number of nodes visitedV, the number of constraint checks(), the compaction
ratio defined as the ratio of number solution to the numbeoidlesConp- Rat i o
(when finding all solutions), the number of additional simos due to bundling FBS+
(when finding a first solution). Note that any savings by DydBn the number of
nodes visited when looking for a first solution can only belaixped by the bundling of
no-goods.

Below, we report results demonstrating the benefits of dyodmndling on ran-
domly generated problems. We describe a non-binary CSPtidttuple(k, n, a, ps,
cs, ¢4, t), Wherek is constraint arityp the number of variables, the domain sizep
the constraint probability of binary constraintg,andc, are the number of ternary and
guaternary constraint respectively, antthe constraint tightness. We considered CSPs
with p2=0.25,¢3=3 andc4=2. In our experience, real-world applications usuallyéhav
many binary constraints and a few non-binary constrainté;justifies the constraint
distribution we choose. We tested CSPs with domain sizes=610, 15} in order to
study the effect of the domain size and to test the performafdundling on larger
search trees. We used the random generator provided by [g8}wt enforcing solv-
ability. The results are of the experiments are shown aevii!]

Figure Experiment Numbr. of sampleg
per data point
Figure 1QFinding all solutions for botlh=10 anda=15 150
Figure 11Finding the first solution foz=10 350
Figure 12Finding the first solution fou=15 350
Figure 13Savings in CPU time and nodes visited 350
for finding a first solutioru=10 anda=15

4 We test only forward checking.
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In the experiment of Figure 10, we had to restrict the valdetighteness tested
because the experiments were prohibitively long. The teshlow that bundling out-
performs non-bundling search when finding all solutionsteNthe logarithmic scale
on they-axis forNV, CPU time, andCC. It is interesting to notice that DynBundl al-
most always reduces the CPU time, suggesting that effortdorputing the bundles
is negligible compared to the savings in the search effdrer& is one exception for
higher tightness values, where FC quickly detects the iste:ce of solutions while
bundling causes an overhead.

Figures 11 and 12 show results for finding one solution. Inamalysis, we distin-
guish the performance at the following three tightnessomgilow tightness, around
the cross-over point, and high tightness.

— At low tightness values, FBS+ is large but the first solut®found without much
backtracking. Therefore, bundling is useful for findinggatutions but its benefits
in bundling no-goods are not visible. The size of constrdéiinitions is the largest
when tightness is low, thus increasing the overhead duertdlimg. Although there
are savings ilNV andCC, the effort of finding domain partitions is not negligeable.
This overhead is reflected by the CPU time measurements. a3eeaft=0.400 is
an extreme where we get 1100 solutions at an additional ¢@t®milliseconds.
This overhead is compensated by the large number numbeeaiative and robust
solutions obtained by DynBndl.

— Around the cross-over point, bundling of no-goods by DynBretomes prevelant
and we encounter the maximum amount of savings, includif@Ab time. Here,
the effort of computing bundles is insignificant comparedhe savings due to
bundling. With a larger domain size (i.e., comparing Figliteand Figure 12), the
savings at the phase-transition region increase. IndegaBid| records a higher
percentage improvement for larger problemsaAL0 the improvement CPU time
is 18% and iMV is 36%, while atz=15 the improvementin CPU time is 38% and
in NV is 40%. This is explained as follows. The search tree with5 is larger than
that fora=10, and therefore the number of nodes saved by DynBndl ih\fauger
(though close in percentage) and the savings in CPU time awésiting these
many fewer nodes overshadows the overheads of bundlingeftine, from these
results we can conclude that in the phase-transition re@iorBndl significantly
improves the performnce of search, even for finding the foktteon.

— For high tightness values, most of the CSPs are not solvallécaward checking
effectively detects this unsolvability early on in the s#mprocess, thus reducing
the number of nodes visited and the number of backtracks. éxgtionned above,
the overhead due to bundling becomes apparent, althougiiamingly so.

Figure 13 stresses the observations made above, perhapdipgamore insight into
the working of DynBndl. Observe the savings for tightnedaest=0.475 and=0.500
for =10. The saving in terms of nodes visites are comparableehemthe savings in
terms of CPU time are higher for the higher tightness valirs €an be explained by
the fact that, for low tightness, the size of constraintaigér, which increases the cost
bundling.

We ran pilot experiments using higher constraint proledifpo= 0.5) and found
that the CSPs generated have little symmetries that Dyn&ardéxploit. The partitions



found in the domain of a variable due to one constraint areylito be broken by

those found due to the other constraints that apply to thialar In the presence of
a large number of constraints, hardly any bundling is domly @a in the search, thus
decreasing the savings in nodes visited. This last testates that bundling is likely
to be less effective for dense random CSPs than for sparse blogvever, because
random problems are less likely to exhibit symmetries theai-world problems, the
performance of dynamic bundling on real-world problems midi/be competitive but

remains to be investigated.

5 Conclusions and future work

In this paper, we described a technique for computing thghteirhood interchangeable
values of a CSP variable in the presence of non-binary caingdr for which no tech-
nigues are reported in the literature to the best of our kadge. We used this technique
for dynamically bundling the search space of backtrackcbeand and gave empirical
evidence of its effectiveness of dynamic bundling. The iovpment is particularly sig-
nificant in the region of the cross-over point, which is a madtiable. In the future, we
plan on further improving our implementation and evaluate éffectivement of these
techniques for solving real-world problems such as suckoouslocument assembly
[21] and query optimization using materialized views inadtetses.
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