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Abstract. Neighborhood Interchangeability (NI) identifies the equivalent values
in the domain of a variable in a Constraint Satisfaction Problem (CSP) by con-
sidering only the constraints that directly apply to the variable. Freuder described
how to compute the NI values using the discrimination tree (DT) [1]. The gener-
alization of DT to non-binary CSPs is not straightforward because the constraints
that apply to a given variable have different scopes and arities. In this paper, we
introduce a method3 for computing the NI values in the presence of non-binary
constraints. Then, we demonstrate the advantages of computing these NI values
dynamically during backtrack search, in a process we call dynamic bundling. As
for the binary case [2, 3], we show that in addition to yielding a robust solutions
and a compact representation of the solution space, dynamicbundling can sig-
nificantly improve the performance of the search process (which is a fortunate
and unexpected side-effect). On randomly generated problems, the performance
improvement is particularly significant around the cross-over point. In [4], we
discuss the advantages of applying these techniques to improve join computation
in databases.

1 Introduction

Many problems in engineering, computer science, and management are naturally mod-
eled as Constraint Satisfaction Problems (CSPs), which are, in general,NP-complete.
Search remains the ultimate mechanism for solving these problems. Glaisher [5], Puget
[6], Ellman [7] and many others proposed exploitingdeclaredsymmetries specific to a
class of problems to improve the performance of search. In addition to exactsymme-
tries, Ellman also considered necessary and sufficientapproximationsof symmetry rela-
tions. While the above approaches focused on exploitingdeclaredsymmetry, our study
considers thediscoveryand use of symmetries. The symmetry mechanisms we study
are based on the notions of local value interchangeability of Freuder [1] and domain
bundling of Haselböck [8], which groups equivalent valuesin a bundle (or equivalence

3 The algorithms and their application to databases are the subject of a pending patent.



class). It was incorrectly assumed that bundling, applied statically (i.e., prior to search)
and, a fortiriori, dynamically (i.e., during search), is too costly and not worthwhile for
finding a single solution. Beckwith et al. [2] and Choueiry and Davis [3] showed how
to implement bundling to yield multiple and robust solutions for less effort than needed
for finding a single solution. (This result holds theoretically for finding all solutions,
and empirically for finding one solution.) They also showed that dynamic bundling
is significantly less expensive and more effective than static bundling. However, their
techniques were limited to binary CSPs.

Although most research in constraint satisfaction focuseson binary CSPs, many
real-life problems are more ‘naturally’ modeled as non-binary CSPs. The focus on bi-
nary CSPs has so far been tolerated because it is always possible in principle to reduce a
finite non-binary CSP to a binary one [9, 10]. Research on non-binary constraints is still
in its infancy and the traditional attitudes on this issue are now being challenged [11]:
it appeared that sometimes it is more effective to operate onthe non-binary encoding of
the CSP than on its binary reduction.

In this paper we introduce an efficient technique for bundling non-binary CSPs and
demonstrate its effectiveness on toy and randomly-generated problems. Even though
such problems lack the redundancy one expects to find in real-world applications, mak-
ing them not particularly amenable to bundling, our empirical results show that bundling
remains beneficial. Our contributions are:

1. An algorithm for computing the NI values of a CSP variable given any subset of
the constraints that apply to the variableregardless of their arities.

2. The integration of this mechanism with backtrack search,which we call dynamic
bundling, for solving non-binary CSPs.

3. Extensive experiments that demonstrate the benefits of dynamic bundling.

This paper is organized as follows. Section 2 states the motivations and background of
our work. Section 3 shows how to compute NI values in the presence of non-binary
constraints and to integrate bundling with search using non-binary forward-checking.
It also illustrates with an example how solutions and no-goods are bundled. Section 4
reports our experiments and analysis. Finally, Section 5 concludes this paper and gives
directions for future research.

2 Motivation and Background

Beckwith et al. studied dynamic bundling in the context of binary CSPs. They have
established that dynamic bundling is guaranteed to never cost more than no-bundling
when seeking all solutions. In particular, they established that, for all solutions, the
number of constraint checks and the number of nodes visited by dynamic bundling may
never exceed the corresponding numbers of search without bundling [2]. Choueiry and
Davis showed empirically that these results hold when seeking the first solution [3].
Those results prove that dynamic bundling (primarily used for finding multiple, robust
solutions) actually provides an effective means to improvesearch performance, drasti-
cally abating the peak cost of search at the phase transition. This counter-intuitive result
is explained by the fact thatdynamic bundling is capable of bundling no-goods, defined



as partial solutions that cannot yield complete solutions.Thus, dynamic bundling ap-
pears as a double-edged sword that reduces thrashing duringsearch. Our goals here are
to extend neighborhood interchangeability to non-binary CSPs and to establish the ben-
efits of dynamic bundling, especially in the region of the phase transition. We restrict
ourselves in this paper to presenting the methods and evaluating them on randomly
generated problems. However, we have already shown their advantages in the context
of databases [4]. Further, we believe that the extension to non-binary case will be more
useful than the binary one, which proved beneficial in case-based reasoning [12] and
local search [13].

2.1 Constraint satisfaction problems

A Constraint Satisfaction Problem (CSP) is defined byP = (V ,D, C) whereV= {Vi}
is a set of variables,D= {DVi

} the set of their respective domains, andC a set of
constraints that restrict the acceptable combination of values for variables. Thescopeof
a constraint is the set of variables to which the constraint applies, and itsarity is the size
of this set. A constraint over the variablesVi, Vj , . . ., Vk is specified as a set of tuples,
subset of the cross-product of the domains of the variables in its scope:CVi,Vj ,...,Vk

= {(〈Vi ai〉, 〈Vj aj〉, . . ., 〈Vk ak〉)} whereai ∈ DVi
and〈Vi ai〉 denotes a variable-

value pair (vvp). We assume that the domains of the variablesare finite. Solving a CSP
requires assigning a value to each variable such that all constraints are simultaneously
satisfied. The problem isNP-complete in general. A CSP is often represented as a graph,
or constraint network. In this graph, a node represents a variable and is labeled by the
corresponding domain. A non-binary constraint is represented as a hyper-edge linking
the nodes in the scope of the constraint. For sake of clarity,we represent a hyper-edge as
another type of node connected to the variables in the scope of the constraint, as shown
in Figure 1. The constraint definitions for this example are given in Figure 2. We use the
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Fig. 1.Example of a non-binary CSP.
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Fig. 2. Constraint tables.

following parameters to assess the worst-case complexity of an algorithm applied to a
CSP and for generating random instances:n number of variables,a maximum domain
size,d node degree,ck number of constraints of arityk, pk = ck

(n

k)
constraint probability

of arity k, andt constraint tightness defined as the ratio of the number of disallowed
tuples over the number of all possible tuples.



CSPs are typically solved using depth-first search with backtracking (BT). In this
paper, we use forward checking (FC) and order the variables dynamically during search
according to the least domain heuristic. Depth-first searchfor binary CSPs proceeds
by iteratively choosing a current variableVc and instantiating it, i.e. assigning to it a
value taken from its domain. The process repeats until all variables are instantiated.
Uninstantiated variables are called future variables, andtheir set is denoted byVf . FC
propagates the effect of instantiating the current variable by removing values inconsis-
tent witha from the domains of the future variables adjacent toVc. If the instantiation
does not wipe out the domain of any variable inVf , Vc is added to the set of instanti-
ated variables (which we call past variables and denote asVp) and search proceeds to
the next variable determined by the ordering schema used. Otherwise, the instantiation
is revoked, its effects are undone, and an alternative instantiation to the current variable
is attempted. When all alternatives fail, search backtracks to the previous assignment,
and revokes the assignment done at this level. The process repeats until one or all so-
lutions are found. At any point during search, the path from the root of the tree to the
current variable is a set of vvps{〈Vi ai〉} for the variablesVi ∈ Vp and their instan-
tiationsai. Search on non-binary CSPs proceeds as described above but FC requires
particular attention as discussed in Section 3.3. We call ano-goodany combination of
variable-value pairs that cannot be extended to a consistent solution.

2.2 Interchangeability

Interchangeability is about the ability to recover one solution to a CSP from another.
When solutions to a CSP are given, one can always define a mapping between the so-
lutions such that one solution can be obtained from another without performing search.
In the broadest sense, this isfunctional interchangeability [1]. We address here a re-
stricted form of interchangeability: the interchangeability of values in the domain of a
single variable. This type of interchangeability does not cover the permutation of val-
ues across variables, which is an isomorphic interchangeability. Below we recall some
forms of interchangeability relevant to our work.

Definition 1. Full interchangeability (FI) (Freuder [1]):Valuesa, b ∈ DV are FI iff
every CSP solution involvinga remains a solution whenb is substituted fora, and vice
versa.

Checking all the solutions of the CSP in Figure 3 we find that the valuesd, e, andf

are fully interchangeable forV2. Computing full interchangeability may require finding
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Fig. 3. A binary CSP.
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all solutions and hence is likely to be intractable. Freuder[1] identified a form oflo-



cal interchangeability, calledneighborhood interchangeability(NI), that is a sufficient
approximation of full interchangeability.

Definition 2. Neighborhood interchangeability (NI) (Freuder [1]):A valuea ∈ DV is
neighborhood interchangeable with a valueb ∈ DV iff for every constraintC incident
to V , a andb are consistent with exactly the same values:{x | (a, x) satisfiesC} = {x
| (b, x) satisfiesC}.

NI is a sufficient, but not a necessary condition for FI. Indeed, in the CSP of Figure 3,
only valuese andf are NI forV2 whereas valuese, f , andd are FI forV2. Algorithm 1,
introduced in [1], computes the NI values for a variableV by building a discrimination
tree (DT).

Input : V

current-node← Create the root of the discrimination treefor each valuev ∈ DV do
for each variableVj ∈ NEIGHBORS(V ) do

for each valuew ∈ DVj
consistent withv for V do

if current-nodehas a child noden with ‘〈Vj w〉’ then
current-node← n

end
else

Generaten a node with ‘〈Vj w〉’ and make it a child ofcurrent-node
current-node← n

end
end
Add ‘V, {v}’ to annotation ofcurrent-node
current-node← root of the discrimination tree

end
end
Output : Root of discrimination tree

Algorithm 1: Algorithm to create a DT of a variableV .

Figure 4 shows the discrimination tree generated forV2 of the CSP of Figure 3. In
this tree, the nodes represent variable-value pairs in the neighborhood ofV2. Further,
some nodes are annotated with values fromDV2

, these annotations form a partition of
DV2

. All the variable-value pairs that appear in a path from the root of the tree to an
annotation are consistent with the values appearing the annotation. The complexity of
this procedure isO(n · a2). It is important, in this procedure, that variables and values
be ordered in a canonical way.

Benson and Freuder used NI to improve search [14]. A weaker form of NI, called
neighborhood interchangeability according to one constraint (NIC), was also used in
search by Haselböck [8]. This search process yields solutions where some variables
have a set of equivalent values, called a bundle. Both paperscompute interchangeability
setsprior to search. We call such strategiesstatic bundling. Figure 5 shows a search tree
for the example of Figure 3 without bundling (left) and with static bundling (center).



Freuder [1] noticed that computing interchangeabilityduring problem solving results
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Fig. 5. Search with no, static, and dynamic bundling.

in a weak type of interchangeability,dynamic interchangeability. Beckwith et al. [2]
and Choueiry and Davis [3] established that recomputing interchangeability partitions
duringsearch is always beneficial: it yields larger bundles and reduces the search effort.
We call the strategydynamic bundling(DynBndl). Figure 5 (right) shows the tree gen-
erated by dynamic bundling. The computational savings can be traced to (1) bundling,
(2) factoring out no-goods, and (3) reusing information from the discrimination tree for
FC. Further, they showed that, in comparison to dynamic bundling, static bundling is
prohibitively expensive, particularly ineffective, and should be avoided [3].

The Cross Product Representation (CPR) of Hubbe and Freuder[15] yields the same
resulting bundles as dynamic bundling, but it requires morespace and does not bundle
no-goods. It operates by doing forward checking for every value of the current variable,
comparing the CSPs induced on the future variables, and thenbundling the values of the
current variable yielding the same induced CSPs. Hence, CPRnecessarily visits more
nodes than DynBndl, even though the difference is polynomially bounded.

2.3 Phase transition

Cheeseman et al. [16] presented empirical evidence, for some random combinatorial
problems, of the existence of a phase transition phenomenonat a critical value (cross-
over point) of an order parameter. They showed a significant increase in the cost of
solving these problems around the critical value. They alsoshowed that the location
of the phase transition and its steepness change with the size of the problem. Because
problems at the cross-over point are acknowledged to be probabilistically the most dif-
ficult to solve, empirical studies to compare the performance of algorithms are typically
conducted in this area.

3 Dynamic Bundling for non-binary CSPs

In this section we first describe how to compute NI values in the presence of non-binary
constraints. Then, we discuss how non-binary constraints are updated for FC. Finally,
we describe the integration of the computation of interchangeability with search, which
we call dynamic bundling. We also illustrate the compactionof the solution space and
the factoring of no-goods.



3.1 Neighborhood interchangeability for non-binary constraints

No technique is reported in the literature for bundling non-binary CSPs. Here we report
for the first time how this can be done by extending the binary case. The idea is to iden-
tify the variable-value pairs in the neighborhood of a variable V consistent with each
value inDV . The values with ‘the same neighborhood’ form an equivalence class. The
difficulty with non-binary constraints is that the constraints have different arities and the
‘neighborhoods’ of two values are difficult to compare. Thismakes the transition from
binary to non-binary CSPs non-trivial because one discrimination tree cannot represent
tuples from all the constraints involved. Our technique is based on building a separate
discrimination tree foreachof thed constraints that apply to the variable. We call such
a tree anon-binary discrimination tree(nb-DT). Below, we introduce two processes.
The first partitions the domain of the variable by building and combining the applicable
nb-DTs; and the second determines the domains of the neighboring variables consis-
tent with each set of the partition. These two processes are used for dynamic bundling
(Section 3.3).

Finding the domain partition. The first process uses Algorithm 2 to build the nb-
DT for a variableV and an associated constraintC that applies to it. Hereσ andπ

correspond respectively to the selection and projection operators in relational algebra.
An nb-DT is created for each of thed constraints applying onV .

Input : V , C

current-node← Create the root of the discrimination tree
S← scope(C) \ {V}
for every valuev ∈ DV do

for every tuplet = (〈Vi ai〉, 〈Vj aj〉, . . ., 〈Vk ak〉) ∈ C do
if σV =v(t) then

if current-nodehas a child noden with πS(t) then
current-node← n

end
else

Generaten a node withπS(t) and make it a child ofcurrent-node
current-node← n

end
end

end
Add ‘V , {v}’ to the annotation ofcurrent-node
current-node← root of the discrimination tree

end
Output : Root of discrimination tree

Algorithm 2: Algorithm to create a nb-DT (V , C)

Figure 6 shows the non-binary discrimination tree (nb-DT) for the constraints inci-
dent toV in the example of Figures 1 and 2. The worst-case time complexity algorithm
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Fig. 6. nb-DTs forV andC1, C2, respectively.

is linear in the size of the constraint, which depends on the domain size of the vari-
able, the tightness, and the arity of the constraint. The complexity for buildingd such
nb-DTs is thereforeO(d · ak+1 · (1 − t)). Every node of the nb-DT stores the tuple it
represents, a list of nodes connected to it, and an annotation which is by default empty.
A pointer called thecurrent-nodeis maintained and it points to the last node used by the
algorithm. Initially, thecurrent-nodepoints to theRoot. The algorithm builds the tree
choosing one valuev from DV and processing each tuple ofC corresponding to〈V v〉
as follows: When the projected tuple matches any of the childnodes of thecurrent-
node, thecurrent-nodemoves to the matching node. Otherwise, a new node is created
and added to thecurrent-node’s children list and thecurrent-nodemoves to the newly
created node. After processing av ∈ DV , v is added to the annotation of thecurrent-
nodeand thecurrent-nodemoves back to theRoot. Therefore, two nodes are connected
if the tuples of each of these nodes lie on the path to a common annotation value. The
trees generated for each of the constraints are then combined as follows to determine
the partition ofDV :

1. Traverse each tree from the root to each annotationAi and constructPi by collect-
ing the nodes on the path. Form a listli = (Pi, Ai) of the particular path and the
corresponding annotation, and a listLj = {li} of these lists for each nb-DT. For
the example of Figure 6, we have:

(a) For the nb-DT ofC1:

– l1 = (((〈A 1〉, 〈B 3〉), (〈A 3〉, 〈B 3〉)), {1, 2}),
– l2 = (((〈A 3〉, 〈B 2〉)), {5, 6}),
– l3 = (((〈A 1〉, 〈B 1〉), (〈A 2〉, 〈B 2〉)), {3, 4}).
– Thus,L1 = (l1, l2, l3)

(b) For the nb-DT ofC2:

– l4 = (((〈C 3〉)), {1, 2}),
– l5 = (((〈C nil〉)), {5}),
– l6 = (((〈C 2〉)), {3, 4}),
– l7 = (((〈C 2〉)), {6}), Thus,L2 = (l4, l5, l6, l7).

These lists are collected inL = (L1, L2, . . . , Ld).
2. Apply Algorithm 3 toL andV , as input parameters, to intersect the annotations

Ai obtained from each tree in order to compute the domain partition of DV . The
worst-case time complexity of this algorithm isO(d2 · a4). For the example of
Figure 6, the algorithm returns{{1, 2}, {3, 4}, {5}, {6}} as the partitioned domain
of V . The resulting sets are the equivalence classesEi of the domain of the variable
(hereDV ) given the constraints that apply to it (here,C1 andC2).



Input : L, V

dom-values← domain ofV
partitioned-domain← nil
for every valuev remaining indom-valuesdo

select-path+annot← An li from everyLj ∈ L for whichv ∈ ANNOTATION(li)
annotation← Intersect annotations in theselect-path+annot
Add annotationto partitioned-domain
dom-values← dom-values\ annotation

end
Output : partitioned-domain

Algorithm 3: Algorithm to intersect annotations.

Computing the new domains of neighboring variables.The second process exploits
these trees to determine the values of the neighborhood ofV consistent with each parti-
tion ofDV . For a given partitionEi, we identify the paths{Pi} in each nb-DT such that
Ei ⊆ Ai. For a variableX connected toV , we project each pathPi onX . Intersecting
the results of the projections gives us the subset ofDX that is consistent with the values
in Ei. (This would be the new domain ofX obtained after forward checking had we
assignedEi to V during search.)

Avenues for improving performance. In an effort to reduce the overhead for comput-
ing bundles, we have included in our implementation a mechanism for automatically
‘switching off’ some operations for partitioning the domain of a given variableV when
it becomes clear that all partitions are necessarily singletons. This happens in two sit-
uations. When any nb-DT of aV results in annotations exclusively made of singleton
elements (see Algorithm 2). In this case we can safely switchoff bundling for building
the nb-DTs for the remaining constraints that apply to the variableV . Another case is
when the intersection of the annotations returns singletons (see Algorithm 3). In prac-
tice, we implement this switching off mechanism as follows.We force Algorithm 2 not
to check for matching child nodes, but to always create new nodes because the infor-
mation in the nb-DTs is useful for filtering the domains of thefuture variables. Another
avenue for improvement is by sorting the constraint definitions. In [4] we showed a
space efficient, sort-based bundling strategy applicable to database join queries. We are
currently exploring ways to reduce the complexity of Algorithms 2 and 3 by exploring
sort-based algorithms suitable for CSPs. Sort-based methods have better time and space
complexity than Algorithms 2 and 3, but they require the constraints to be sorted. When
a dynamic variable ordering is used for solving a CSP, sort-based methods require fre-
quent re-sorting. There is thus a trade-off to be made from the benefit of sort-based
methods in conjunction with dynamic variable ordering in search for solving CSPs,
which needs to be further investigated.

3.2 Updating non-binary constraints for forward checking

Independently of bundling, two issues arise when applying FC to non-binary CSPs:
(1) choosing the subset of constraints to take into account,and (2) updating their defi-



nitions to reflect past instantiations and domain prunings.We adopt the strategy called
nFC2 [11], where the constraints considered are the ones that apply to the current vari-
able and at least one future variable.

The update of a non-binary constraint according to past instantiations amounts to
intersecting the original definition of the constraint withthe cross product of the (up-
dated) domains ofVc and future variables. This operation is time consuming in practice.
We propose here an equivalent, more efficient implementation that uses a linear number
of selection and projection operations. LetVc be the current variable andCx one such
constraint (see Figure 7). Let scope(Cx) = {Va} ∪ {Vc} ∪ {Vb}, where{Va} ⊂ Vp and

VcC x

Va

Vb

Unstantiated variable
Instantiated variable

{     }

{     }

Fig. 7.Partially instantiated non-binary constraintCx.

{Vb} ⊂ Vf . The domains of variables in{Vc} ∪ {Vb} might have already been filtered
by FC, and certain tuples inCx might have become invalid. Thus, we need to select the
tuples ofCx that have survived the filtering by FC according to instantiations of the past
variables. The selected tuples must satisfy the conditions: (1) 〈Vi ai〉 for Vi ∈ {Va} and
ai the bundle instantiated toVi, and (2)aj ∈ DVj

for Vj ∈ {Vc}∪{Va}, whereDVj
are

filtered domains. We denote this operationσFC
Vp

(Cx). In order to compute the updated

constraint, we projectσFC
Vp

(Cx) on{Vc} ∪ {Vb},

C′
x = π{Vc}∪{Vb}(σ

FC
Vp

(Cx)). (1)

The way non-binary FC without bundling is implemented affects, to a large extent,
the number of constraint checks and CPU time spent to solve a CSP. The updated con-
straint of Equation (1) is valid for all values inDVc

. It is wasteful to discard the result
of this computation after instantiatingVc. If the instantiation is not consistent and the
search backtracks to the variable thenC′

x is computed again. To avoid this expensive
computation we store eachC′

x associated withVc. Note that by doing so we level the
playing field for the two algorithms being compared. Thus, our empirical results reflect
the gain due purely to bundling and exclude the gains from theadditional nb-DT data
structure.

3.3 Dynamic bundling

Search using dynamic bundling operates by assigning a bundle toVc, and propagating
the effect of this decision on the future variables. The bundles of Vc are obtained by
applying the first process of Section 3.1 (i.e., finding the domain partition) to the sub-
set of the constraints onVc determined according tonFC2. The constraints passed to
Algorithm 2 are computed using Equation (1). The effects of this instantiation are then
propagated using the second process of Section 3.1 (i.e., computing the new domains
of neighboring variables).



Figure 8 shows partially the non-bundled search of tree of the example of Figures 1
and 2 with variable ordering{V , A, B, C, D}. Figure 9 shows the dynamically bun-
dled search tree. The domain ofV is partitioned as discussed in Section 3.1 andV is
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{3}

{3}

{3}

{1}

{1}

{3}

{3}

{3}

{1}

{3}{2}

Fig. 8. Search tree without bundling.
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{3} {3}
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Fig. 9. Search tree using dynamic bundling.

assigned the bundle{1, 2}. FC propogates this instantiation and the domains ofA, B,
andC are set to{{1}, {3}}, {3}, and{3}, respectively. Next, the domain partitions of
A are computed. We find the two domain values, 1 and 3, to be interchangeable and
A is instantiated with{1, 3}. On propagating this instantiation, the domain ofD now
becomes{1}. Next, the search proceeds to instantiateB with the only domain value
{3}. The instantiation results in the annihalation of the domain of C, and search back-
tracks. There are no values remaining in the domains ofB andA. Hence, the search
backtracks toV . Note here thatA was assigned a bundle of size 2. In the case of non-
bundling search, another value fromA will be tested and extra nodes visited only to
detect failure. By clubbing{1, 3} of A together, bundling saved visiting nodes ofB.
Further savings result because bundling detects that the bundle{1, 2} is a also no-good.
The gains due to bundlingV multiply those due to bundling ofA, thus illustrating the
gains of no-good bundling.

On instantiatingV with {3, 4}, search is able to assign values to the remaining
variables of the CSP and finds a solution as{〈V {3, 4}〉, 〈A {1}〉, 〈B {1}〉, 〈C {2}〉,
〈D {1}〉}. From this example, we see that dynamic bundling necessarily visits less
nodes by bundling solutions and no-goods. Search with bundling visits 8 nodes whereas
search without bundling will visit 15 nodes to find a solution. Moreover, bundling pro-
vides two solutions instead of one at a lower cost.

The use of a MAC-like, full lookahead schema [17] necessarily performs a better
filtering of the domains of the future variables. While this may increase the number of
constraint checks, it would yield ‘fatter’ solution bundles (thus improving bundling),
and reduce of number of nodes visited during search. However, even with MAC, our
technique does not guarantee that the resulting bundling ismaximal [18]. More gen-
erally, dynamic bundling, while it partitions the set of solutions (i.e., every solution
appears in exactly one bundle) does not guarantee the quality of the partition, its opti-
mality, or its uniqueness.



4 Experiments

The benchmark problems usually used for symmetric CSPs are not suitable for bundling
for the following reasons. (1) Most exhibit only symmetriesthat are permutations of
values over variables. (2) Most have small domains (e.g., Boolean), which are not
amenable to bundling. (3) Most are modeled using a unique global constraint of ex-
ponential size. Defining the constraint in extension amounts to solving the problem and
is likely intractable. (4) Finally, for coloring problems,bundling can be done only in the
case of list-coloring problems (typically used to model resource allocation problems).
However, such bundling can be easily computed without nb-DTs as shown in [19].

For finding all solutions and using the same look-ahead strategy4 during search,
dynamic bundling (DynBndl) is guaranteed to visit no more nodes and do no more
constraint checks than backtrack search without bundling.However, the bundling effort
may increase the CPU time, which could be a concern. For finding the first solution, the
dominance of dynamic bundling over non-bundling is in general not guaranteed even
in terms of nodes visited and constraint checks. In order to assess the time overhead
for bundling and its impact on the search effort, we compare the median values of the
following metrics for DynBndl and FC on radomly generated problems: the CPU time,
the number of nodes visitedNV, the number of constraint checks (CC), the compaction
ratio defined as the ratio of number solution to the number of bundlesComp-Ratio
(when finding all solutions), the number of additional solutions due to bundling FBS+
(when finding a first solution). Note that any savings by DynBndl in the number of
nodes visited when looking for a first solution can only be explained by the bundling of
no-goods.

Below, we report results demonstrating the benefits of dynamic bundling on ran-
domly generated problems. We describe a non-binary CSP withthe tuple〈k, n, a, p2,
c3, c4, t〉, wherek is constraint arity,n the number of variables,a the domain size,p2

the constraint probability of binary constraints,c3 andc4 are the number of ternary and
quaternary constraint respectively, andt the constraint tightness. We considered CSPs
with p2=0.25,c3=3 andc4=2. In our experience, real-world applications usually have
many binary constraints and a few non-binary constraints, which justifies the constraint
distribution we choose. We tested CSPs with domain sizes ofa={10, 15} in order to
study the effect of the domain size and to test the performance of bundling on larger
search trees. We used the random generator provided by [20] without enforcing solv-
ability. The results are of the experiments are shown as follows:

Figure Experiment Numbr. of samples
per data point

Figure 10Finding all solutions for botha=10 anda=15 150
Figure 11Finding the first solution fora=10 350
Figure 12Finding the first solution fora=15 350
Figure 13Savings in CPU time and nodes visited 350

for finding a first solutiona=10 anda=15

4 We test only forward checking.
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Fig. 10.Comparison of DynBndl and FC for finding all solutions.
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In the experiment of Figure 10, we had to restrict the values of tighteness tested
because the experiments were prohibitively long. The results show that bundling out-
performs non-bundling search when finding all solutions. Note the logarithmic scale
on they-axis forNV, CPU time, andCC. It is interesting to notice that DynBundl al-
most always reduces the CPU time, suggesting that effort forcomputing the bundles
is negligible compared to the savings in the search effort. There is one exception for
higher tightness values, where FC quickly detects the non-existence of solutions while
bundling causes an overhead.

Figures 11 and 12 show results for finding one solution. In ouranalysis, we distin-
guish the performance at the following three tightness regions: low tightness, around
the cross-over point, and high tightness.

– At low tightness values, FBS+ is large but the first solution is found without much
backtracking. Therefore, bundling is useful for finding fatsolutions but its benefits
in bundling no-goods are not visible. The size of constraintdefinitions is the largest
when tightness is low, thus increasing the overhead due to bundling. Although there
are savings inNV andCC, the effort of finding domain partitions is not negligeable.
This overhead is reflected by the CPU time measurements. The case oft=0.400 is
an extreme where we get 1100 solutions at an additional cost of 270 milliseconds.
This overhead is compensated by the large number number of alternative and robust
solutions obtained by DynBndl.

– Around the cross-over point, bundling of no-goods by DynBndl becomes prevelant
and we encounter the maximum amount of savings, including inCPU time. Here,
the effort of computing bundles is insignificant compared tothe savings due to
bundling. With a larger domain size (i.e., comparing Figure11 and Figure 12), the
savings at the phase-transition region increase. Indeed, DynBndl records a higher
percentage improvement for larger problems. Ata=10 the improvement CPU time
is 18% and inNV is 36%, while ata=15 the improvement in CPU time is 38% and
in NV is 40%. This is explained as follows. The search tree witha=15 is larger than
that fora=10, and therefore the number of nodes saved by DynBndl is much larger
(though close in percentage) and the savings in CPU time due to visiting these
many fewer nodes overshadows the overheads of bundling. Therefore, from these
results we can conclude that in the phase-transition regionDynBndl significantly
improves the performnce of search, even for finding the first solution.

– For high tightness values, most of the CSPs are not solvable and forward checking
effectively detects this unsolvability early on in the search process, thus reducing
the number of nodes visited and the number of backtracks. As mentionned above,
the overhead due to bundling becomes apparent, although notalamingly so.

Figure 13 stresses the observations made above, perhaps providing more insight into
the working of DynBndl. Observe the savings for tightness valuest=0.475 andt=0.500
for a=10. The saving in terms of nodes visites are comparable, however, the savings in
terms of CPU time are higher for the higher tightness value. This can be explained by
the fact that, for low tightness, the size of constraints is larger, which increases the cost
bundling.

We ran pilot experiments using higher constraint probalities (p2= 0.5) and found
that the CSPs generated have little symmetries that DynBndlcan exploit. The partitions



found in the domain of a variable due to one constraint are likely to be broken by
those found due to the other constraints that apply to the variable. In the presence of
a large number of constraints, hardly any bundling is done early on in the search, thus
decreasing the savings in nodes visited. This last test indicates that bundling is likely
to be less effective for dense random CSPs than for sparse ones. However, because
random problems are less likely to exhibit symmetries than real-world problems, the
performance of dynamic bundling on real-world problems maystill be competitive but
remains to be investigated.

5 Conclusions and future work

In this paper, we described a technique for computing the neighborhood interchangeable
values of a CSP variable in the presence of non-binary constraints, for which no tech-
niques are reported in the literature to the best of our knowledge. We used this technique
for dynamically bundling the search space of backtrack search and and gave empirical
evidence of its effectiveness of dynamic bundling. The improvement is particularly sig-
nificant in the region of the cross-over point, which is a mostvaluable. In the future, we
plan on further improving our implementation and evaluate the effectivement of these
techniques for solving real-world problems such as such custom document assembly
[21] and query optimization using materialized views in databases.
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