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Abstract. Constraint Processing and Database techniques overlaificagtly.
We discuss here the application of a constraint satisfa¢gohnique, called dy-
namic bundling, to databases. We model the join query caoamtiput as a Con-
straint Satisfaction Problem (CSP) and solve it by searitigudynamic bundling.
First, we introduce a sort-based technique for computimgdhyic bundling. Then,
we describe the join algorithm that produces nested tuples resulting process
yields a compact solution space and savings of memory,stiake, and/or net-
work bandwidth. We realize further savings by using burgitmreduce the num-
ber of join-condition checks. We place our bundling techeiin the framework
of the Progressive Merge Join (PMJ) [1] and use the XXL lipi&] for imple-
menting and testing our algorithm. PMJ assists in effejivery-result-size pre-
diction by producing early results. Our algorithm reinfeschis feature of PMJ
by producing the tuples as multiple solutions and is thufulifa improving size
estimation.

1 Introduction

Although not widely acknowledged, progress made in the af@&atabases has histor-
ically greatly benefited the area of Constraint Processing, vice versa. We present
here one new such opportunity, in which a Constraint Satiigfa technique that we
have developed and call bundling is used to improve the ceetipu of a join. The join
operation is extensively studied in the database liteestind remains one of the most
computationally expensive operations. To the best of oomkedge, no work has yet
exploited the existence of symmetries within a relatiomtpiiove the performance of
the task or reduce the space necessary for storing the.r€smisider the two relations
R1 andR2 shown in Figure 1 (left), and the following SQL query:

SELECTR1. A, R1.B, RL.C
FROM R1, R2
WHERE R1.A = R2.AANDRL.B=R2.B ANDRL.C=R2.C

The natural joirR1 X R2 has the tuples shown in Figure 1 (center). Considers (R1)
ando 4—4(R1). The tuples they yield iR1 X R2 differ only for the value ofd. We say
that A=2 andA=4 are symmetric and use this symmetry to compact the raguliples
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Fig. 1. Left: R1, R2. Center: R1 X R2. Right: Compacted?l X R2.

in R1 X R2. We propose here a technique for detecting such symmetrésxploit-
ing them for compacting join results. Note that our techeicpiefficient but does not
guarantee the maximal possible compaction. Our techniguergtes the compacted
join relation shown in Figure 1 (right), which has only 3 teplwith nested values.
When computing a sequence of join operations, the intermtedbin results occupy
less space. When these results are used in a subsequentgoatuples are available
per page, which reduces the 1/O operations and thus saves tim

Although most research in Constraint Satisfaction focusedinary constraints,
many real-life problems are more ‘naturally’ modeled as-borary Constraint Satis-
faction Problems (CPSs). The focus on binary CSPs has s@éar tolerated because
it is always possible, in principle, to reduce a finite nonasy CSP to a binary one [3,
4]. However, recent research has shown that it is sometinoes affective to operate
on the non-binary encoding of the CSP than on its binary régluf5]. At this pointin
time, research on non-binary constraints is still in it@ardy. In [6, 7], we proposed a
techniquedynamic bundling, for dynamically detecting and exploiting symmetries in
binary CSPs. In [8], we extended this technique to non-pinanstraints and showed a
significant improvement in processing time and solutiorcepén this paper, we show
how to use dynamic bundling for processing join queries amdgacting the join re-
sults. We make the following contributions:

1. Provide a new way to map a join query into a CSP (Section 3).
2. Present an algorithm for dynamic bundling that improtheshemory usage of our
previous implementation [8] and is more suitable for dasaisgSection 4).



3. Present a join algorithm for producing bundled solutitreg are more compact,
thus saving memory (Section 5).

4. Identify new opportunities for exploiting the compadtgion space in other database
applications such as data analysis and materialized views.

This paper is structured as follows. Section 2 states ouivatan and provides
background information. Section 3 models the join opera®a CSP. Section 4 de-
scribes a technique for bundling the values of an attribute rielation. Section 5 uses
this bundling technique in a new join algorithm. Section §cdsses our implementa-
tion and the results of our experiments. Section 7 sumnarekated work. Finally,
Section 8 concludes the paper and gives directions fordutsearch.

2 Background

In this section we explain the motivations behind our rede@and summarize back-
ground information useful for reading the paper.

2.1 Motivation

Join algorithms can be classified into three categoriesh-based, sort-based, and
nested-loop algorithms. All these algorithms attempt tornoize the join by minimiz-
ing the number of times relations are scanned. Hash-bagedtaims use hash-tables
to partition relations according to the values of an atteéband then join the partitions
corresponding to the same values. The sort-based appreddiops relations by sort-
ing them on the attributes involved in the join conditionafks to sorting, each tuple
in a relation is compared with tuples of the other relatiandywithin a fixed range of
values, which are significantly fewer than all possible éspSorting reduces the num-
ber of scans of both relations and speeds up join procesdimgted-loop algorithms
are used when relations fit in memory or when no adequatermaéimction or useful
sorting order is available. None of these techniques attempompact query results,
although this can be beneficial given the large size of jogults. The reduction of the
number of I/O operations during query evaluation is a keyoiam determining the
efficiency of a database. Extensive research is devotecdetddkielopment of query-
evaluation plans and evaluation algorithms that minimieertumber of /O operations.
Our technique of dynamic bundling produces results thatangpact by automatically
detecting symmetries within a relation. Our goal is to ekplee use of these compact
solution spaces in order to reduce I/O operations and extriarmation from query
results useful for data analysis and data mining. We achfesegoal by first reducing
the space requirements of our bundling technique in ordadapt it to the bundling
of solution tuples of a query in the context of databasesti@ed). Then, we design a
join algorithm that uses bundling (Section 5).

We project two other important uses of our technique, namalproving query-
size estimation and supporting data analysis and minirtedd, the fact that the size
of the compacted tuples produced by our technique is large iadicator of high re-
dundancy in the join relations. This information can be usetoost the estimate of



query-result size, which is important for query planningrther, the compacted results
of our new join algorithm represent similar solutions tha elustered together. Let us
consider a scenario with the two relations

Cust oner _Choi ce(Custid, Favorite Product, Cust_ Category),
which stores customer choices from an online survey, and
Cust oner _Li st (Custid),

which stores the customers staying in Lincoln, and a querfinth the result of the
online survey for Lincoln:

SELECT Custoner_List.Custid, Favorite Product, Cust_ Category
FROM Cust onmer _Choi ce, Custoner _Li st
WHERE Custoner Choice.Custid = Cust_List.Custid

Our techniques will produce results where customers withesproduct and category
choices are bundled up together. This is just one examplewfdundling adds infor-
mation to query results. This additional information carubed for data mining and in
packages for data analysis.

2.2 Sort-based join algorithms

The join operator in relational algebra takes two relatasarguments and a condition
(known as the join condition) that compares any two attebubne from each of the
two argument relations. The generic form of a joilRs,4, S, whereRandS are two
relations;z andy are attributes fronrRandS respectively, and stands for a comparison
operator (e.g+, >, <, and#£) called thgoin condition. Equality is the most commonly
used join condition, and gives tlkegui-join. A natural join is a special case of an equi-
join for whichz = y, i.e. the attributes of the two relations are same. The jparation

is among the most I/O-intensive operators of relationatlatg because it may require
multiple scans over the two input relations and also bectgssize of the result can be
as large as the product of the sizes of these relations.

Our new join algorithm (Section 5) adopts the main idea ofRhegressive Merge
Join (PMJ) of [1]. PMJ is a join algorithm that produces quessults early, and hence
has the ability to provide valuable information to the quseize estimator. These are
exactly the working conditions that we are targeting. PMd gpecial sort-merge join
algorithm, which have two phases: the sorting phase and #rging phase. We first
describe sort-merge algorithms in general, then discuss PM

In the sorting phase of a sort-merge algorithm for computivegjoin of two rela-
tions,R1 andR2, the memory of sizé\l pages is first filled with pages &1. These
loaded pages are then sorted on the join-condition atagoamnd stored back to disk as
a sub-list orrun of the relation. WherRl has NV pages,% runs are generated. This
process is repeated for the second same-sized rel@fiot the end of the sorting
phase, we have produced sorted runRbfandR2. Now, the merging phase can start.

We first consider thad/ > 2 x &, Now 21‘5]2\, pages from each of th¢- runs ofR1




are loaded into memory, and the same is don&frThe smallest unprocessed tuples
from the pages dRl andR2, respectively, are tested for the join condition. Those tha
satisfy the condition are joined and the result written afpoiu A page is exhausted
when all its tuples have been processed. When a page is ¢égtiaipage from the
same run is brought in. Whel/ < 2 x % multiple merge phases are needed. Each
intermediate merging phase produces longer but fewerdsautes. This process of gen-
erating longer but fewer runs continues until the numberofrof the two relations

is equal to the number of pages that can fit in memory. Thisreerge algorithm is a
blocking algorithm in the sense that the first results come only dfiesbrting phase is
completed.

PMJ delivers results early by joining relations alreadyimigithe sorting phase [1].
Indeed, during the sorting phase, pages from both the celatire read into memory,
sorted, and joined to produce early results. Because PMilpes results early, it is
a non-blocking or pipelined version of the sort-merge join algorithm. Thantoer of
runs generated for each relation is more than that by a glesmtamerge algorithm
and is given by%. The merging phase is similar to that of a sort-merge algor;t
except that PMJ ensures that pagefRbfand R2 from the same run are not joined
again as they have already produced their results in thinggrthase. The memory
requirements of PMJ are more than those of a sort-mergeitigonecause the number
of runs generated during the sorting phase is double thatsofftamerge algorithm.
The number of runs generated doubles because the memoryishared by both
relations. Because of the increased number of runs, thecebasf multiple merging
phases taking place increases. The production of earlitse&swuses the results of PMJ
to be unsorted. However, the unsorted results allow for raoceirate estimation of the
result size, which is an important feature.

2.3 Constraint Satisfaction Problems

A Constraint Satisfaction Problem (CSP) is definedby= (V, D, C) whereV= {V;}

is a set of variablesP= {Dy, } the set of their respective domains, afid set of
constraints that restrict the acceptable combination lnfegafor variables. A constraint
over the variabled;, Vj, ..., V; is specified a€’v, v, ... v, = {((Vi ai), (V} aj), ...,
(Vi ax))} with a; € Dy, a; € Dy,, ..., ax € Dy,. Solving a CSP requires assigning a
value to each variable such that all constraints are simedtasly satisfied. The problem
is NP-complete in general. Thecope of a constraint is the set of variables to which
the constraint applies, and igsity is the size of this set. Non-binary constraints are
represented as hyper-edges in the constraint network akerdf clarity, we represent
a hyper-edge as another type of node connected to the esiabthe scope of the
constraint, see Figure 2.

Solving CSPs with search. CSPs are typically solved using depth-first search with
backtracking. Depth-first search proceeds by choosingrawivariablél, andinstan-
tiating it, i.e. assigning to it a value taken from its domainy/. < a. The variable and
its assigned value define a variable-value pair (vvp) dehoyg V. a). Uninstantiated
variables are called future variables, and their set is tehloy)’;. A look-ahead strat-
egy called forward checking (FC) is then applied which reesofrom the domains of



Fig. 2. Example of a non-binary CSP.

the future variables the values that are not consistentthétcurrent assignment, thus
propagating the effect of the instantiatiofl. a). V. is then added to the set of instan-
tiated variables, which we call past variables and denoig,al the instantiation does
not wipe out the domain of any variable ¥y, search considers the next variable in the
ordering and moves one level down in the search tree. Othenihie instantiation is
revoked, its effects are undone, and an alternative irigtaot to the current variable
is attempted. When all alternatives fail, search backsdokthe previous level in the
tree. The process repeats until one or all solutions aredfovariables are considered
in sequence according tovariable ordering heuristic. Common wisdom requires that
the most-constrained variable be considered first in omerduce the branching factor
of the search tree and the number of backtracks.

2.4 Symmetry as value interchangeability

Interchangeability is a general concept that charactetize types of symmetries that
may arise in a CSP. The concept deals with redundancy in al@8f broadest sense,
when a CSP has more than one solution, one can define a mapgiingdn the solu-
tions such that one solution can be obtained from anothé&mowitperforming search.
This is functional interchangeability [9]. We address here a restricted fofrimier-
changeability: the interchangeability of values in the @imof a single variable. This
type of interchangeability does not cover the permutatibmatues across variables,
which is an isomorphic interchangeability. Consider thé>G8own in Figure 3 (A). In
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Fig. 3. Solving a CSP with search, with and without bundling.

the absence of any symmetry consideration, the depth-§iesth process described in
Section 2.3 yields the tree shown in Figure 3 (B). A simpldysis of the values of the
variableV; shows that the valuesand f are consistent with exactly the same values in



the neighborhood of,, and consequently they are interchangeable in a solutitmeof
CSP. Valueg and f are said to be neighborhood interchangeable. Detectirghher-
hood interchangeability can be efficiently done using tiseritinination tree algorithm
proposed in [9].

Search with static bundling. Haselbdck proposed to ‘bundle’ up, in the search tree,
neighborhood interchangeable values (egundf for V3) since they necessarily yield
equivalent sub-trees [10], see Figure 3 (C). We call thienegestatic bundling be-
cause the bundles are compupeibr to search.

Search with dynamic bundling. When using a look-ahead strategy such as forward
checking for searching the CSP, the effect of an instantiatif a current variable is
propagated to the domains of the future variables. In thengi@ of Figure 3 (A),
V1 « dresults in the elimination af from the domain of/3. At this point, one notices
that all three values, ¢, andf become neighborhood interchangeablelfarDynamic
bundling is based on the idea of recomputing the bundlesasts@roceeds to take
advantage of the new opportunities to bundle values enddyletbcisions taken along
a path of the tree. Figure 3 (D) shows the tree generated bgndigrbundling. In pre-
vious work we have established that dynamic bundling is ynmeneficial: it yields
larger bundles and reduces the search effort [6, 7]. Thigpaaed result can be ex-
plained by the fact that, in addition to bundling solutiodghamic bundling allows us
to factor out larger no-goods (non solutions), thus elirtilgamore ‘barren’ portions
of the search tree. Further, we showed that, in comparisdgriamic bundling, static
bundling is prohibitively expensive, particularly ineftere, and should be avoided [7].
In [8], we extended this technique to non-binary constsaiahd demonstrated signifi-
cant improvements in processing time and solution spadhidrpaper, we show how
to use dynamic bundling for processing join queries and @atipg the join results.

3 Modeling a join query as a CSP

We show how to model a join query as a CSP using our running pkeam

SELECT R1.A, R1.B, R1.C
FROM R1, R2
VWHERE R1.A = R2Z.AANDRL.B= R2.B ANDRL.C = R2.C

We map the join query into the following CSP = {V,D,(C}, represented by the
constraint network of Figure 4:

1. The attributes as CSP variables. V is the set of attributes in the join query. There
are 6 variables in our example, which are the attribREesA, R2. A/R1. B,R2. B,
R1. C, andR2. C.
For an equi-join query, as it is the case here, the attritjotesed using an equality
constraint can be represented by a unique variable. In thepbe above, the CSP
representing the query would consist of only 3 variableb Rit. A=R2. A/R1L. B
=R2. B, andR1. C= R2. C. When the query lists the two equated attributes in its
SELECT clause, the CSP variable is simply repeated in the output.
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Fig. 4. Two equivalent formulations of thejoin asa CSP.

2. The attribute values as variable domains. D is the set of the domains of the vari-
ables. For each attribute, it is the set of values the atgitakes in a relation.

For an equi-join query, the domain of the CSP variable reprtsg the equated
attribute is the union of the set of values that the equatkibates take in their
respective relations.

3. The relations and join conditions as CSP constraints. C is the set of constraints
of the CSP. These constraints originate from two sourceagha the relations to
be joined and the join conditions. The relations to be joid&dctly map to CSP
constraints that are expressed extensionally. We calkthesstraintgelational
constraint. The join conditions map directly to CSP constraints exgeddnten-
sionally, which we caljoin-condition constraints. In our example, the relations to
be joined ardRl andR2, and there are 3 equality constraints due to the join condi-
tions of the query.

For an equi-join query where the equated attributes areesepted by a unique
variable, the join condition is implicit in the CSP repretgion and does not need
to be expressed.

Table 1 maps the terminology of databases into that of CainstProcessing:

| DB terminology | CSP terminology |
Table, relation Constraint (which we call relational constraint)
Join condition Constraint (which we call join-condition constraint)
Relation arity Constraint arity

Attribute CSP variable

Value of an attribute Value of a CSP variable

Domain of an attribute  |Domain of a CSP variable

Tuple in atable Tuple in a constraint

Tuple allowed by a constraint
Tuple consistent with a constraint
Constraint relation Constraint of linear (in)quality
(in Constraint Databases
A sequence of natural joipall the solutions of the corresponding CSP

Table 1. Terminology mapping.



Our algorithm for bundling non-binary CSPs required thaistmaints be enumer-
ated [8]. However, for computing interchangeability in th&tabase scenario, we do
not have to enumerate the join-condition constraints amek $hem explicitly. Instead,
we proceed as follows. When joining two relations specifiedxtension, the resulting
tuple is checked for consistency with the join-conditiopedfied in intension as this
tuple is being built up. When the values in the partially btuble are not consistent
with a join-condition constraint, the tuple is discardesl vee explain in Section 5.1.
This is possible because we are guaranteed that all the G&Plesa are present in at
least one constraint defined in extension and thus all tinegondition constraints will
be checked for consistency.

4 Bundling relations

This section describes the computation of interchangeathles (i.e., a bundle) of an
attribute in a relation. Since our join algorithm is a soenge algorithm, the relations
must first be sorted. Thus, we need to select the order of thibuaes for sorting the

relations. This order is necessarily static because weatafford to re-sort relations
during processing. In terms of CSPs, this corresponds tati sirdering of the vari-

ables. We first describe our ordering heuristic then therigete for computing inter-

changeability.

4.1 Heuristic for variable ordering

With V the set of variables in the CSP representing a query, we e@foa first-in
first-out queue of the ordered variablg,. is initialized to an arbitrary variabte We
also denoté&/, the unordered variables (.82, =V \ V,). Let V. be the last variable
added toV,. The next variable in the ordéf, is chosen fronV, as follows:

1. Consider the variable§V;} C V, such thatV; is linked with a join-condition
constraintC; to V.. V,, is selected as the variable for which, N scope(C;) | is
the smallest.

2.V, is selected as a variable from the same relatiovi.as

3. V, is selected arbitrarily fronw,, .

If no variables satisfy a rule in the sequence above, theméxin sequence is applied
to V.. When more than one variable satisfy a rule, the next rulegusnce is applied
to discriminate among the qualifying variablés, is removed from),, and added to
V,. The process is repeated urlti] is empty. The goal of this ordering is to allow the
checking of join-condition constraints as early as possibbr the example of Figure 4,
one possible ordering is the sequeiie A, R2. A, RL. B, R2. B, Rl. C, andR2. C.
Note that the ordering of the variables affects the size @btnerated bundles and that
different ordering heuristics need to be investigated.

1 One can elaborate heuristics for choosing the first variabie possibility is to exploit the
meta-data maintained by the DBMS such as the number of unijues of an attribute. Other
heuristics may choose first the attribute that participateébe largest number of constraints.
The design and evaluation of such heuristics still neede tovestigated.



4.2 The principle

Given the queu®, of ordered variables, we build the bundles dynamically @/foin-
ing the tuples loaded in memory. Variables in the queue amsidered in sequence. The
variable under consideration is called the current vagi&b| the set of previous ones
is calledV,, and the set of remaining on¥$. V; is initialized to),, keeping the same
order of variables, ant, is set to nil. First, we find a bundle féf. as described below.
Then, we determine the subset of values in the bundle thahsistent with at least one
bundle from each of the variables Wy with a join-condition constraint witly, (see
Algorithm 2). If such a subset is not empty, we assign it’toIn terms of CSPs, this
corresponds to instantiatirig.. We moveV, to V,, and a new; is chosen as the first
variable inV;. Otherwise, if the consistent subset iGris empty, we compute the next
bundle ofV, from the remaining tuples and repeat the above operationcdifénue
this process until all the variables are instantiated aed thutput these instantiations
as the next nested tuple of the join. Consider the scenamoendnnext bundle fdr,., an
attribute of relatiorR1, needs to be computed during a sequence of instantiatieas (s
Figure 5).

Relational constraint [l

Join—condition constraint []

Fig. 5. Instantiation sequence.

The bundle depends on the instantiation of variables finm V), (i.e., previously
instantiated variables). Although the computed bundI&ofloes not directly depend
on the instantiations of past variables frét®, the bundle subset to be assigned/}o
must be consistent with those variabledpfthat share a join-condition constraint with
V.. When such a variable is frol2, then the instantiation of. is affected by the
instantiations of variables frof2.

Below, we describe the method for computing a bundlg.ofn attribute of relation
R given that some of the variables Bfare inV,. The bundles are computed on the
tuples ofR presentin the memory, call&l . First,R' is sorted with the variable coming
earliestin the static ordering (see Section 4.1) as thegrifey, the one coming second
as the secondary key, and so on. The sorting clusters tujileshe same values for
variables as they appear in the static ordering.

4.3 Data structures
We first introduce the various data structures used for ceimgthe bundles.

— Current-Inst is a record of size equal to the number of variables in the GS®.
used to store the current instantiations of variableR af V,. This corresponds



to a current path in a search tree. When a variable is assigr®mthdle of size
greater than one, only the smallest value in the bundle redto Current-Inst, as
a representative of the bundle.

— Processed-Values is a similar record storing cumulatively all non-represgint
values of the assigned bundles. While computing bund|&3,dfiples correspond-
ing to values foiV, in Processed-Values are ignored.

— Current-Constraint is a selection of the relatioR' (of which V, is an attribute)
such that: (1) Past variables have the values storgdument-Inst, and (2) the
value ofV, is greater than the previous instantiationl@f Initially, the Current-
Constraint is set toR' .

The tuples with the same value f&} in Current-Constraint form a partitionp, and the
value ofV, in this partition is denoted M.UE(p). Figure 6 shows these data-structures
under various scenarios. A partitignis marked ashecked when VALUE(p) is part

R1 1/ ={R1.A,R1.B}
R1.A[RLB|RI.C = P
Current—Inst Processed—Values
A Current—Constraint for V. =R1.B RIA=5
1132 given R1.A = (1, 5) -
114 (23 |y R1.B=13,14
2|10 |25 ‘
s{i2 23| A ‘
P P P Partition of R1.A, with R1.A=(1,5)
el Value(p) = 5 when V. =R1.A R1.B=(12, 13, 14)

Fig. 6. Data structures shown under 3 different scenarios.

of an instantiation bundle or whanis selected to be compared with other partitions.
Otherwise, the partition is consideradchecked. P. refers to the unchecked partition
with the lowest value of, in Current-Constraint. When no checked partition exists for
V., P.is setto a dummy such as -1.

4.4 Bundle computation

Algorithm 1 computes the next bundle ®f given P.. NEXT-PARTITION(p) returns
the firstunchecked partition in Current-Constraint following the partitionp. Forp= -1,
NEXT-PARTITION(p) returns the first partition i€urrent-Constraint. P, moves to the
next unchecked partition at every call of Algorithm 1.

Algorithm 1 is called by Algorithm 2 of Section 5 for compugirthe bundleb,.
of V. and the bundles of the variabl&s connected td/. with a join-condition con-
straint. Further, Algorithm 2 determines the sulisst of the bundle.. that is consis-
tent with the variabled/;. This consistent set of valuésst is then used to instantiate



Input: V¢, Current-Constraint
bundle < ni | , the bundle to return
P. «— NEXT-PARTITION(FP,)
Mark P. as checked
Push \ALUE(P,) into bundle
P, «— NEXT-PARTITION(P.)
while P, do
t < tuples of P.
p < tuples of P,
if v, (t) = 7y, (p) then push \ALUE(P;) in bundle
P! « NEXT-PARTITION(PY))
end
Output: bundle

Algorithm 1: Algorithmto generate the next bundle of V.

V.. This instantiation operation includes the update of thia dauctureLurrent-Inst
andProcessed-Values. In particular, the values iRrocessed-Values that are lesser than
those associated witR. are deleted.

We can compute all the bundles Bf by repeatedly calling Algorithm 1, then as-
signing the returned bundle #d. until Algorithm 1 returnsni | . Thus, the algorithm
described here implements a lazy approach for computinguhdles and avoids stor-
ing the entire partition of the domain of every variable.

In the method described aboReocessed-Valuesis the data structure that occupies
the most space. Whereas all the other data structures hee& fmioportional to the
number of variables (and therefore cause insignificant ngmeerhead), the size of
Processed-Values depends on the number of tuples and the amount of bundling per
formed. The worst-case scenario fnocessed-Values occurs when all the values of a
variable are in a single bundle. In this caBegcessed-Values will hold all the unique
values of that variable. Suppose that thereMreiples in the relation, the relation hias
attributes, and the number of unique values of the varia;b%, iwherel is the average
length of each partition of... Then, the size olProcessed-Valuesis % tuples. How-
ever, if this bundle goes on to form a result tuple, it will saaore space than required
for bundling. Even when this bundle fails to yield a resufiley it still saves on many
comparisons thereby speeding up computation. Our cummgsieimentation is a proof
of concept, and we are investigating how to improve its efficy, possibly by the use
of bit-maps.

5 Join algorithm using bundling

This section shows the use of bundling while computing a §gira depth-first search.
The join algorithm discussed in this section is based on tiogressive Merge Join.
The technique discussed here can be easily adapted to thiesguart-merge join since
PMJ is just an extension of sort-merge. We first describerthmeémory join algorithm,
and then place it in the schema of the external join algorithm



5.1 Join computation in memory

We present here the algorithm to join two sub-sets of relatithat are currently in
memory. For the sake of readability, Algorithm 2 is rese@tto binary join conditions
(where the join conditions are between two attributes frafieidnt relations). It can
be easily extended to join conditions with more than twdlaites. Algorithm 2 takes

Input : depth, Current-Solution
while (depth<|V |) and (depth> 1) do
Ve « Variable[depth]
b. « next bundle fol. using Algorithm 1
if b. isempty then
| BACKTRACK, decrementlepth, and GOTO L1
end
Inst < b,
repeat
foreach V; € V; connected to V. by a join-condition constraint do
ConsiderR; the relational constraint that appliesitp
Selectr; from R; according taCurrent-Solution
repeat
Find a bundlé; applying Algorithm 1 onV; andr;
if b; isempty then break
I, — COMMON(b;, bc)
until I; isnot empty;
if no b; then BACKTRACK, decrementiepth and Goto L1

end

Inst — CoMMON(Io, I1, ..., 1)
until Instisnot empty;

Instantiatel/. with Inst
Current-Solution[V.] <« Inst
Incrementdepth

L1:

end
Output: Current-Solution

Algorithm 2: Algorithmto compute the in-memory join using bundling.

as input the level of/, in the search tree (i.edgpth) and the current path represented
by the data structur€urrent-Solution. Current-Solution is a record that stores the as-
signed bundles to the variablesfy (note thatCurrent-Solution cannot be obtained
from Current-1nst andProcessed-Values). Variabl €] is the array of variables in the same
order as the static ordering of Section 4.1. WhextBTRACK is called the value for
Variable[depth] in Current-Inst is reset, theéProcessed-Values for the variable is emp-
tied, the value for the variable i@urrent-Solution is reset, andCurrent-Constraint is
re-computed, thus undoing the effects of the previousitistion. The function ©Mm-
MON() computes the set of values in the input bundles that arsistemt with each other



according to the applicable join-condition constraintsc&use this algorithm combines
sorting and constraint propagation with bundling, it pregsisolutions quickly, which
compensates for the effort spent on bundling.

5.2 The structure of the overall join

We have discussed join computation of tuples that are in mgarad now describe the
steps for computing the join of complete relations usingiotmemory join algorithm,
Algorithm 2. The join of the two input relations is computesing an approach similar
to the PMJ, in the two phases shown below.

Sorting phase. The sorting phase is similar to the PMJ, except that for fgrthe
pages of relations in memory we use the bundling-basedigebof Algorithm 2. The
sorting phase produces the early results and also a sotidissar runs of the relations.
These runs are stored back on disk and used in the merging phte join. Since the
memory is filled with pages from both the relations, the nundfeuns generated for
each relation isZY.

Merging phase. In the merging phase, as for the PI\/% pages from every run

created from the sorting phase are kept in memory. Rt represent the pages in
memory of relationrel andi*® run, whererel € {0,1} andi € {1,2,..., 2%} We
store one solution each from the join of pages in an arraleaablution, defined by
Equation (1).

solutionl[i][j] = P? M P}, i # j (1)

J

The minimum solution fronsolution[][] is the next result of the join. The next solution
from the pages that gave the minimum solution is then conapaitel used to fill the
corresponding place solution[][]. A page P/ is removed from memory and replaced
with another page from the same run only if it satisfies thie¥ahg two conditions for
every pagerl*Tel. Prel is being joined with: (1) No more join tuples result from

pret x P and (2) the last tuple iyl is less than that of’/*!. The tuples
are compared using the same comparison criteria as the sedsfar sorting. These
conditions ensure the tuples are produced in sorted ordein@dthe merging phase)
and that the algorithm is complete.

6 Implementation and experiments

One of the goals of the XXL library [2] is to provide an infrastture for evaluating
new algorithms in databases. For example, PMJ was evaleafsetimentally using
this library. In our experience, XXL provides a good infrasture for building new
database algorithms through its rich cursor algebra boitop of Java’s iterator inter-
face. We implemented our join algorithm by extending theFBEREDCURSOR class

of the XXL library.



The current implementation is a proof of concept and offeseimroom for im-
provement. To show the feasibility of our technique, weaeésiur join algorithm on
randomly generated relations and on data from a real-weddurce allocation prob-
lem in development in our group. For the real-world appi@atwe computed the se-
quence of the natural join of three relations, with respetyi3, 4, and 3 attributes. The
corresponding CSP has 4 variables, with domain size 3, 3, 800250 respectively.
The resulting join of size 69 was compressed down to 32 néspées. For the random
problems, we used relations®f 10,000 tuples. We set the page size to 200 tuples and
the available memory size fd = % whereN = 10000/200. We executed the query
of our running example over five such pairs of relations. Tdwilt of the query had an
average of 8,500 tuples, signifying that the query was se&cThe number of tuples
produced by bundling was reduced to 5,760 bundled tupleayarage of 1.48 tuples
per bundle. The number of pages saved was more%halﬁven if the worst-case sce-
nario for the join occurred for every in-memory join (whicha highly unlikely event),
the additional cost due to bundling is given %L where% is the number of unique
values of an attribute anidis the number of attributes in one relation (which is 3 here).
For the worst case wheh= 1, there are still savings in terms of pages. Again, the
worst-case described here is of the current implementatibich offers much room
for improvement.

7 Related work

The idea of data compression is not new and is used in congatesdabase systems
[11]. In these systems, data is stored in a compressed fomdisk. It is decompressed
either while loading it into memory or while processing a qu&he compression al-
gorithms are applied at the attribute level and are typiadititionary-based techniques,
which are less CPU-intensive than other classical compre$schniques [12]. Al-
though most of the work in compressed databases appliedatiores with numerical
attributes [11], some work on string attributes has alsaolukme [13]. Another feature
of compressed databases that differs from our approachtstit query results passed
to the next operator are uncompressed and likely to be l&@gework differs from
the above in that we reduce some of the redundancy presevdretuples of a given
relation. Our techniques are independent of the data ty@m @ttribute. Further, the
results of our queries are compacted, thereby assistingakieoperator and reducing
the storage of materialized views on disk. When these cotagaesults are loaded
into memory for query processing, the de-compaction iscéffely cost-free. The only
costs associated with our techniques are those for perigrthe compaction. Finally,
the compaction is carried out while the query is being evellizand is not a distinct
function performed in separation.

In [14], Mamoulis and Papadias present a spatial-join &@igorusing mechanisms
of search with forward checking, which are fundamental in€int Processing. They
store the relations representing spatial data in R-tretstres and use the structures
to avoid unnecessary operations when computing a join. ®hstraints under consid-
eration are binary. The key idea is to reduce the computatiost by propagating the
effects of search, thereby detecting failure early. Ounnégue is not restricted to bi-



nary constraints, and is applicable to constraints of aity. &urther, it differs from the
approach of Mamoulis and Papadias in that it reduces I/Oatiperand compacts join
results in addition to reducing computational operations.

Bernstein and Chiu [15], Wallace et al. [16], Bayardo [17]yrdker et al. [18]
exploit the standard consistency checking techniques ofsttaint Processing to re-
duce the number of the intermediate tuples of a sequencdraf j@/hile Wallace et
al. consider Datalog queries, Bayardo and Miranker et atlystelational and object-
oriented databases. Our CSP model of join query differs filoeir work in that the
constraints in our model include both relational and joamdition constraints, whereas
the latter models the relational constraints as CSP vasadohd only the join-condition
constraints as CSP constraints. Thus, our model is fineranittallows a more flexi-
ble ordering of the variables of the CSP, which increasepénmrmance of bundling.
Finally, Rich et al. [19] propose to group the tuples with Hzme value of the join
attribute (redundant value). Their approach does not leungithe values of the join
attribute or exploit that redundancies that may be presethta grouped sub-relations.

8 Conclusions and Future work

We described a new method for computing interchangealifity use it in a new join
algorithm, thus establishing the usefulness of dynamidabng techniques for join
computation. In the future, we plan to address the follovhegissues:

— Refine our implementation by the use of lighter data strestur

— Test the usefulness of these techniques in the context streamt databases where
the value of an attribute is a continuous interval such asammatabases [20].

— Conduct thorough evaluations of overall performance aratead (memory and
cpu) on different data distributions. And,

— Investigate the benefit of using bundling for query sizeneation and materialized
views.
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