
Constraint Processing Techniques for Improving Join
Computation: A Proof of Concept

Anagh Lal andBerthe Y. Choueiry

Constraint Systems Laboratory
Department of Computer Science and Engineering

University of Nebraska-Lincoln
{alal|choueiry}@cse.unl.edu

Abstract. Constraint Processing and Database techniques overlap significantly.
We discuss here the application of a constraint satisfaction technique, called dy-
namic bundling, to databases. We model the join query computation as a Con-
straint Satisfaction Problem (CSP) and solve it by search using dynamic bundling.
First, we introduce a sort-based technique for computing dynamic bundling. Then,
we describe the join algorithm that produces nested tuples.The resulting process
yields a compact solution space and savings of memory, disk-space, and/or net-
work bandwidth. We realize further savings by using bundling to reduce the num-
ber of join-condition checks. We place our bundling technique in the framework
of the Progressive Merge Join (PMJ) [1] and use the XXL library [2] for imple-
menting and testing our algorithm. PMJ assists in effectivequery-result-size pre-
diction by producing early results. Our algorithm reinforces this feature of PMJ
by producing the tuples as multiple solutions and is thus useful for improving size
estimation.

1 Introduction

Although not widely acknowledged, progress made in the areaof Databases has histor-
ically greatly benefited the area of Constraint Processing,and vice versa. We present
here one new such opportunity, in which a Constraint Satisfaction technique that we
have developed and call bundling is used to improve the computation of a join. The join
operation is extensively studied in the database literature and remains one of the most
computationally expensive operations. To the best of our knowledge, no work has yet
exploited the existence of symmetries within a relation to improve the performance of
the task or reduce the space necessary for storing the result. Consider the two relations
R1 andR2 shown in Figure 1 (left), and the following SQL query:

SELECT R1.A, R1.B, R1.C
FROM R1, R2
WHERE R1.A = R2.A AND R1.B = R2.B AND R1.C = R2.C

The natural joinR11 R2 has the tuples shown in Figure 1 (center). ConsiderσA=2(R1)
andσA=4(R1). The tuples they yield inR1 1 R2 differ only for the value ofA. We say
thatA=2 andA=4 are symmetric and use this symmetry to compact the resulting tuples

R1
A B C

1 12 23
1 13 23
1 14 23
2 10 25
3 16 30
3 16 24
4 10 25
5 12 23
5 13 23
5 14 23
6 13 27
6 14 27
7 14 28
7 19 20

R2
A B C

1 12 23
1 13 23
1 14 23
1 15 23
2 10 25
3 17 20
3 18 22
4 10 25
5 12 23
5 13 23
5 14 23
5 15 23
6 13 27
6 14 27
8 14 28

R1 1 R2
A B C

1 12 23
1 13 23
1 14 23
2 10 25
4 10 25
5 12 23
5 13 23
5 14 23
6 13 27
6 14 27

R1 1 R2
compacted

A B C

{1, 5} {12, 13, 14} {23}
{2, 4} {10} {25}
{6} {13, 14} {27}

Fig. 1. Left: R1, R2. Center: R1 1 R2. Right: CompactedR1 1 R2.

in R1 1 R2. We propose here a technique for detecting such symmetries and exploit-
ing them for compacting join results. Note that our technique is efficient but does not
guarantee the maximal possible compaction. Our technique generates the compacted
join relation shown in Figure 1 (right), which has only 3 tuples with nested values.
When computing a sequence of join operations, the intermediate join results occupy
less space. When these results are used in a subsequent join,more tuples are available
per page, which reduces the I/O operations and thus saves time.

Although most research in Constraint Satisfaction focuseson binary constraints,
many real-life problems are more ‘naturally’ modeled as non-binary Constraint Satis-
faction Problems (CPSs). The focus on binary CSPs has so far been tolerated because
it is always possible, in principle, to reduce a finite non-binary CSP to a binary one [3,
4]. However, recent research has shown that it is sometimes more effective to operate
on the non-binary encoding of the CSP than on its binary reduction [5]. At this point in
time, research on non-binary constraints is still in its infancy. In [6, 7], we proposed a
technique,dynamic bundling, for dynamically detecting and exploiting symmetries in
binary CSPs. In [8], we extended this technique to non-binary constraints and showed a
significant improvement in processing time and solution space. In this paper, we show
how to use dynamic bundling for processing join queries and compacting the join re-
sults. We make the following contributions:

1. Provide a new way to map a join query into a CSP (Section 3).
2. Present an algorithm for dynamic bundling that improves the memory usage of our

previous implementation [8] and is more suitable for databases (Section 4).

3. Present a join algorithm for producing bundled solutionsthat are more compact,
thus saving memory (Section 5).

4. Identify new opportunities for exploiting the compact solution space in other database
applications such as data analysis and materialized views.

This paper is structured as follows. Section 2 states our motivation and provides
background information. Section 3 models the join operatoras a CSP. Section 4 de-
scribes a technique for bundling the values of an attribute in a relation. Section 5 uses
this bundling technique in a new join algorithm. Section 6 discusses our implementa-
tion and the results of our experiments. Section 7 summarizes related work. Finally,
Section 8 concludes the paper and gives directions for future research.

2 Background

In this section we explain the motivations behind our research and summarize back-
ground information useful for reading the paper.

2.1 Motivation

Join algorithms can be classified into three categories: hash-based, sort-based, and
nested-loop algorithms. All these algorithms attempt to optimize the join by minimiz-
ing the number of times relations are scanned. Hash-based algorithms use hash-tables
to partition relations according to the values of an attribute, and then join the partitions
corresponding to the same values. The sort-based approach partitions relations by sort-
ing them on the attributes involved in the join condition. Thanks to sorting, each tuple
in a relation is compared with tuples of the other relation lying within a fixed range of
values, which are significantly fewer than all possible tuples. Sorting reduces the num-
ber of scans of both relations and speeds up join processing.Nested-loop algorithms
are used when relations fit in memory or when no adequate hashing function or useful
sorting order is available. None of these techniques attempts to compact query results,
although this can be beneficial given the large size of join results. The reduction of the
number of I/O operations during query evaluation is a key factor in determining the
efficiency of a database. Extensive research is devoted to the development of query-
evaluation plans and evaluation algorithms that minimize the number of I/O operations.
Our technique of dynamic bundling produces results that arecompact by automatically
detecting symmetries within a relation. Our goal is to exploit the use of these compact
solution spaces in order to reduce I/O operations and extract information from query
results useful for data analysis and data mining. We achievethis goal by first reducing
the space requirements of our bundling technique in order toadapt it to the bundling
of solution tuples of a query in the context of databases (Section 4). Then, we design a
join algorithm that uses bundling (Section 5).

We project two other important uses of our technique, namely: improving query-
size estimation and supporting data analysis and mining. Indeed, the fact that the size
of the compacted tuples produced by our technique is large isan indicator of high re-
dundancy in the join relations. This information can be usedto boost the estimate of

query-result size, which is important for query planning. Further, the compacted results
of our new join algorithm represent similar solutions that are clustered together. Let us
consider a scenario with the two relations

Customer_Choice(Custid, Favorite_Product, Cust_Category),

which stores customer choices from an online survey, and

Customer_List(Custid),

which stores the customers staying in Lincoln, and a query tofind the result of the
online survey for Lincoln:

SELECT Customer_List.Custid, Favorite_Product, Cust_Category
FROM Customer_Choice, Customer_List
WHERE Customer_Choice.Custid = Cust_List.Custid

Our techniques will produce results where customers with same product and category
choices are bundled up together. This is just one example of how bundling adds infor-
mation to query results. This additional information can beused for data mining and in
packages for data analysis.

2.2 Sort-based join algorithms

The join operator in relational algebra takes two relationsas arguments and a condition
(known as the join condition) that compares any two attributes, one from each of the
two argument relations. The generic form of a join isR1xθyS, whereR andS are two
relations,x andy are attributes fromR andS respectively, andθ stands for a comparison
operator (e.g.,=,≥,≤, and6=) called thejoin condition. Equality is the most commonly
used join condition, and gives theequi-join. A natural join is a special case of an equi-
join for whichx = y, i.e. the attributes of the two relations are same. The join operation
is among the most I/O-intensive operators of relational algebra because it may require
multiple scans over the two input relations and also becausethe size of the result can be
as large as the product of the sizes of these relations.

Our new join algorithm (Section 5) adopts the main idea of theProgressive Merge
Join (PMJ) of [1]. PMJ is a join algorithm that produces queryresults early, and hence
has the ability to provide valuable information to the query-size estimator. These are
exactly the working conditions that we are targeting. PMJ isa special sort-merge join
algorithm, which have two phases: the sorting phase and the merging phase. We first
describe sort-merge algorithms in general, then discuss PMJ.

In the sorting phase of a sort-merge algorithm for computingthe join of two rela-
tions,R1 andR2, the memory of sizeM pages is first filled with pages ofR1. These
loaded pages are then sorted on the join-condition attributes and stored back to disk as
a sub-list orrun of the relation. WhenR1 hasN pages,N

M
runs are generated. This

process is repeated for the second same-sized relationR2. At the end of the sorting
phase, we have produced sorted runs ofR1 andR2. Now, the merging phase can start.
We first consider thatM ≥ 2 × N

M
. Now M2

2×N
pages from each of theN

M
runs ofR1

are loaded into memory, and the same is done forR2. The smallest unprocessed tuples
from the pages ofR1 andR2, respectively, are tested for the join condition. Those that
satisfy the condition are joined and the result written as output. A page is exhausted
when all its tuples have been processed. When a page is exhausted a page from the
same run is brought in. WhenM < 2 × N

M
, multiple merge phases are needed. Each

intermediate merging phase produces longer but fewer sorted runs. This process of gen-
erating longer but fewer runs continues until the number of runs of the two relations
is equal to the number of pages that can fit in memory. This sort-merge algorithm is a
blocking algorithm in the sense that the first results come only after the sorting phase is
completed.

PMJ delivers results early by joining relations already during the sorting phase [1].
Indeed, during the sorting phase, pages from both the relations are read into memory,
sorted, and joined to produce early results. Because PMJ produces results early, it is
a non-blocking or pipelined version of the sort-merge join algorithm. The number of
runs generated for each relation is more than that by a general sort-merge algorithm
and is given by M2

4×N
. The merging phase is similar to that of a sort-merge algorithm,

except that PMJ ensures that pages ofR1 andR2 from the same run are not joined
again as they have already produced their results in the sorting phase. The memory
requirements of PMJ are more than those of a sort-merge algorithm because the number
of runs generated during the sorting phase is double that of asort-merge algorithm.
The number of runs generated doubles because the memory is now shared by both
relations. Because of the increased number of runs, the chances of multiple merging
phases taking place increases. The production of early results causes the results of PMJ
to be unsorted. However, the unsorted results allow for moreaccurate estimation of the
result size, which is an important feature.

2.3 Constraint Satisfaction Problems

A Constraint Satisfaction Problem (CSP) is defined byP = (V ,D, C) whereV= {Vi}
is a set of variables,D= {DVi

} the set of their respective domains, andC a set of
constraints that restrict the acceptable combination of values for variables. A constraint
over the variablesVi, Vj , . . ., Vk is specified asCVi,Vj ,...,Vk

= {(〈Vi ai〉, 〈Vj aj〉, . . .,
〈Vk ak〉)} with ai ∈ DVi

, aj ∈ DVj
, . . ., ak ∈ DVk

. Solving a CSP requires assigning a
value to each variable such that all constraints are simultaneously satisfied. The problem
is NP-complete in general. Thescope of a constraint is the set of variables to which
the constraint applies, and itsarity is the size of this set. Non-binary constraints are
represented as hyper-edges in the constraint network. For sake of clarity, we represent
a hyper-edge as another type of node connected to the variables in the scope of the
constraint, see Figure 2.

Solving CSPs with search.CSPs are typically solved using depth-first search with
backtracking. Depth-first search proceeds by choosing a current variableVc andinstan-
tiating it, i.e. assigning to it a valuea taken from its domain,Vc ← a. The variable and
its assigned value define a variable-value pair (vvp) denoted by 〈Vc a〉. Uninstantiated
variables are called future variables, and their set is denoted byVf . A look-ahead strat-
egy called forward checking (FC) is then applied which removes from the domains of

{1, 2, 3}

{1, 2, 3}

{1, 2, 3}

Variable

1C

{1, 2, 3}

{1, 2, 3}

{1, 2, 3}

A

I

B

2C

V
{1, 2, 3}

C 3
F
G

E

Constraint

Fig. 2. Example of a non-binary CSP.

the future variables the values that are not consistent withthe current assignment, thus
propagating the effect of the instantiation〈Vc a〉. Vc is then added to the set of instan-
tiated variables, which we call past variables and denote asVp. If the instantiation does
not wipe out the domain of any variable inVf , search considers the next variable in the
ordering and moves one level down in the search tree. Otherwise, the instantiation is
revoked, its effects are undone, and an alternative instantiation to the current variable
is attempted. When all alternatives fail, search backtracks to the previous level in the
tree. The process repeats until one or all solutions are found. Variables are considered
in sequence according to avariable ordering heuristic. Common wisdom requires that
the most-constrained variable be considered first in order to reduce the branching factor
of the search tree and the number of backtracks.

2.4 Symmetry as value interchangeability

Interchangeability is a general concept that characterizes the types of symmetries that
may arise in a CSP. The concept deals with redundancy in a CSP.In the broadest sense,
when a CSP has more than one solution, one can define a mapping between the solu-
tions such that one solution can be obtained from another without performing search.
This is functional interchangeability [9]. We address here a restricted form of inter-
changeability: the interchangeability of values in the domain of a single variable. This
type of interchangeability does not cover the permutation of values across variables,
which is an isomorphic interchangeability. Consider the CSP shown in Figure 3 (A). In

d

e

V
1

{ d }
dV1

S

cf

2 V
{ c , d, e, f }

{a, b, d} d
=

4 V c2
V

c

=

S

= dV1

=3 V

1V

V2 d, e, f{a, b, c}

S

2V e, f d

(D) (A)

Without bundling With dynamic bundlingWith static bundling

(B) (C)

Fig. 3. Solving a CSP with search, with and without bundling.

the absence of any symmetry consideration, the depth-first search process described in
Section 2.3 yields the tree shown in Figure 3 (B). A simple analysis of the values of the
variableV2 shows that the valuese andf are consistent with exactly the same values in

the neighborhood ofV2, and consequently they are interchangeable in a solution ofthe
CSP. Valuese andf are said to be neighborhood interchangeable. Detecting neighbor-
hood interchangeability can be efficiently done using the discrimination tree algorithm
proposed in [9].

Search with static bundling. Haselböck proposed to ‘bundle’ up, in the search tree,
neighborhood interchangeable values (e.g.,e andf for V2) since they necessarily yield
equivalent sub-trees [10], see Figure 3 (C). We call this techniquestatic bundling be-
cause the bundles are computedprior to search.

Search with dynamic bundling. When using a look-ahead strategy such as forward
checking for searching the CSP, the effect of an instantiation of a current variable is
propagated to the domains of the future variables. In the example of Figure 3 (A),
V1 ← d results in the elimination ofd from the domain ofV3. At this point, one notices
that all three valuesd, e, andf become neighborhood interchangeable forV2. Dynamic
bundling is based on the idea of recomputing the bundles as search proceeds to take
advantage of the new opportunities to bundle values enabledby decisions taken along
a path of the tree. Figure 3 (D) shows the tree generated by dynamic bundling. In pre-
vious work we have established that dynamic bundling is always beneficial: it yields
larger bundles and reduces the search effort [6, 7]. This unexpected result can be ex-
plained by the fact that, in addition to bundling solutions,dynamic bundling allows us
to factor out larger no-goods (non solutions), thus eliminating more ‘barren’ portions
of the search tree. Further, we showed that, in comparison todynamic bundling, static
bundling is prohibitively expensive, particularly ineffective, and should be avoided [7].
In [8], we extended this technique to non-binary constraints, and demonstrated signifi-
cant improvements in processing time and solution space. Inthis paper, we show how
to use dynamic bundling for processing join queries and compacting the join results.

3 Modeling a join query as a CSP

We show how to model a join query as a CSP using our running example:

SELECT R1.A, R1.B, R1.C
FROM R1, R2
WHERE R1.A = R2.A AND R1.B = R2.B AND R1.C = R2.C

We map the join query into the following CSPP = {V ,D, C}, represented by the
constraint network of Figure 4:

1. The attributes as CSP variables. V is the set of attributes in the join query. There
are 6 variables in our example, which are the attributesR1.A,R2.A,R1.B,R2.B,
R1.C, andR2.C.
For an equi-join query, as it is the case here, the attributesjoined using an equality
constraint can be represented by a unique variable. In the example above, the CSP
representing the query would consist of only 3 variables withR1.A = R2.A,R1.B
=R2.B, andR1.C = R2.C. When the query lists the two equated attributes in its
SELECT clause, the CSP variable is simply repeated in the output.

R2.C

Relational constraint

R1.C = R2.C

R1.A = R2.A

R2 R2

R2.BR2.A

Join−condition constraint

R1.B = R2.B

R1.CR1.BR1.A

R1
R1

Fig. 4. Two equivalent formulations of the join as a CSP.

2. The attribute values as variable domains. D is the set of the domains of the vari-
ables. For each attribute, it is the set of values the attribute takes in a relation.
For an equi-join query, the domain of the CSP variable representing the equated
attribute is the union of the set of values that the equated attributes take in their
respective relations.

3. The relations and join conditions as CSP constraints. C is the set of constraints
of the CSP. These constraints originate from two sources, namely: the relations to
be joined and the join conditions. The relations to be joineddirectly map to CSP
constraints that are expressed extensionally. We call these constraintsrelational
constraint. The join conditions map directly to CSP constraints expressed inten-
sionally, which we calljoin-condition constraints. In our example, the relations to
be joined areR1 andR2, and there are 3 equality constraints due to the join condi-
tions of the query.
For an equi-join query where the equated attributes are represented by a unique
variable, the join condition is implicit in the CSP representation and does not need
to be expressed.

Table 1 maps the terminology of databases into that of Constraint Processing:

DB terminology CSP terminology

Table, relation Constraint (which we call relational constraint)
Join condition Constraint (which we call join-condition constraint)
Relation arity Constraint arity
Attribute CSP variable
Value of an attribute Value of a CSP variable
Domain of an attribute Domain of a CSP variable
Tuple in a table Tuple in a constraint

Tuple allowed by a constraint
Tuple consistent with a constraint

Constraint relation Constraint of linear (in)quality
(in Constraint Databases)
A sequence of natural joinsAll the solutions of the corresponding CSP

Table 1.Terminology mapping.

Our algorithm for bundling non-binary CSPs required that constraints be enumer-
ated [8]. However, for computing interchangeability in thedatabase scenario, we do
not have to enumerate the join-condition constraints and store them explicitly. Instead,
we proceed as follows. When joining two relations specified in extension, the resulting
tuple is checked for consistency with the join-conditions specified in intension as this
tuple is being built up. When the values in the partially built tuple are not consistent
with a join-condition constraint, the tuple is discarded, as we explain in Section 5.1.
This is possible because we are guaranteed that all the CSP variables are present in at
least one constraint defined in extension and thus all the join-condition constraints will
be checked for consistency.

4 Bundling relations

This section describes the computation of interchangeablevalues (i.e., a bundle) of an
attribute in a relation. Since our join algorithm is a sort-merge algorithm, the relations
must first be sorted. Thus, we need to select the order of the attributes for sorting the
relations. This order is necessarily static because we cannot afford to re-sort relations
during processing. In terms of CSPs, this corresponds to a static ordering of the vari-
ables. We first describe our ordering heuristic then the technique for computing inter-
changeability.

4.1 Heuristic for variable ordering

With V the set of variables in the CSP representing a query, we denote Vq a first-in
first-out queue of the ordered variables.Vq is initialized to an arbitrary variable1. We
also denoteVu the unordered variables (i.e.,Vu = V \ Vq). Let Vc be the last variable
added toVq. The next variable in the orderVn is chosen fromVu as follows:

1. Consider the variables{Vi} ⊆ Vu such thatVi is linked with a join-condition
constraintCi to Vc. Vn is selected as the variable for which| Vu ∩ scope(Ci) | is
the smallest.

2. Vn is selected as a variable from the same relation asVc.
3. Vn is selected arbitrarily fromVu.

If no variables satisfy a rule in the sequence above, the nextrule in sequence is applied
to Vu. When more than one variable satisfy a rule, the next rule in sequence is applied
to discriminate among the qualifying variables.Vn is removed fromVu and added to
Vq. The process is repeated untilVu is empty. The goal of this ordering is to allow the
checking of join-condition constraints as early as possible. For the example of Figure 4,
one possible ordering is the sequenceR1.A, R2.A, R1.B, R2.B, R1.C, andR2.C.
Note that the ordering of the variables affects the size of the generated bundles and that
different ordering heuristics need to be investigated.

1 One can elaborate heuristics for choosing the first variable. One possibility is to exploit the
meta-data maintained by the DBMS such as the number of uniquevalues of an attribute. Other
heuristics may choose first the attribute that participatesin the largest number of constraints.
The design and evaluation of such heuristics still needs to be investigated.

4.2 The principle

Given the queueVq of ordered variables, we build the bundles dynamically while join-
ing the tuples loaded in memory. Variables in the queue are considered in sequence. The
variable under consideration is called the current variable Vc, the set of previous ones
is calledVp, and the set of remaining onesVf . Vf is initialized toVq, keeping the same
order of variables, andVp is set to nil. First, we find a bundle forVc as described below.
Then, we determine the subset of values in the bundle that is consistent with at least one
bundle from each of the variables inVf with a join-condition constraint withVc (see
Algorithm 2). If such a subset is not empty, we assign it toVc. In terms of CSPs, this
corresponds to instantiatingVc. We moveVc to Vp, and a newVc is chosen as the first
variable inVf . Otherwise, if the consistent subset forVc is empty, we compute the next
bundle ofVc from the remaining tuples and repeat the above operation. Wecontinue
this process until all the variables are instantiated and then output these instantiations
as the next nested tuple of the join. Consider the scenario where a next bundle forVc, an
attribute of relationR1, needs to be computed during a sequence of instantiations (see
Figure 5).

R2.BR2.A

R1

V

R1.A
Relational constraint

R1.B R1.C R2.C

R2

V Vp c f

Join−condition constraint

Fig. 5. Instantiation sequence.

The bundle depends on the instantiation of variables fromR1 in Vp (i.e., previously
instantiated variables). Although the computed bundle ofVc does not directly depend
on the instantiations of past variables fromR2, the bundle subset to be assigned toVc

must be consistent with those variables ofVp that share a join-condition constraint with
Vc. When such a variable is fromR2, then the instantiation ofVc is affected by the
instantiations of variables fromR2.

Below, we describe the method for computing a bundle ofVc, an attribute of relation
R, given that some of the variables ofR are inVp. The bundles are computed on the
tuples ofR present in the memory, calledR’. First,R’ is sorted with the variable coming
earliest in the static ordering (see Section 4.1) as the primary key, the one coming second
as the secondary key, and so on. The sorting clusters tuples with the same values for
variables as they appear in the static ordering.

4.3 Data structures

We first introduce the various data structures used for computing the bundles.

– Current-Inst is a record of size equal to the number of variables in the CSP.It is
used to store the current instantiations of variables ofR in Vp. This corresponds

to a current path in a search tree. When a variable is assigneda bundle of size
greater than one, only the smallest value in the bundle is stored inCurrent-Inst, as
a representative of the bundle.

– Processed-Values is a similar record storing cumulatively all non-representative
values of the assigned bundles. While computing bundles ofVc, tuples correspond-
ing to values forVc in Processed-Values are ignored.

– Current-Constraint is a selection of the relationR’ (of which Vc is an attribute)
such that: (1) Past variables have the values stored inCurrent-Inst, and (2) the
value ofVc is greater than the previous instantiation ofVc. Initially, the Current-
Constraint is set toR’.

The tuples with the same value forVc in Current-Constraint form a partitionp, and the
value ofVc in this partition is denoted VALUE(p). Figure 6 shows these data-structures
under various scenarios. A partitionp is marked aschecked when VALUE(p) is part

R1.A = 1

R1.B = 12

R1.C = ?

Current−Inst Processed−Values

R1.A = 5

R1.B = 13, 14

Vp
= {R1.A, R1.B}

1

1

1

2

5

5

5

12

12

13

13

14

14

10 25

23

23

23

23

23

23

R1

Current−Constraint

R1.CR1.BR1.A

for V = R1.Bc

given R1.A = (1, 5)

Partition of R1.A, with
Value(p) = 5 when V = R1.Ac

II

III
I

R1.A = (1, 5)

R1.B = (12, 13, 14)

Fig. 6. Data structures shown under 3 different scenarios.

of an instantiation bundle or whenp is selected to be compared with other partitions.
Otherwise, the partition is consideredunchecked. Pc refers to the unchecked partition
with the lowest value ofVc in Current-Constraint. When no checked partition exists for
Vc, Pc is set to a dummy such as -1.

4.4 Bundle computation

Algorithm 1 computes the next bundle ofVc given Pc. NEXT-PARTITION(p) returns
the firstunchecked partition inCurrent-Constraint following the partitionp. Forp= -1,
NEXT-PARTITION(p) returns the first partition inCurrent-Constraint. Pc moves to the
next unchecked partition at every call of Algorithm 1.

Algorithm 1 is called by Algorithm 2 of Section 5 for computing the bundlebc

of Vc and the bundles of the variablesVi connected toVc with a join-condition con-
straint. Further, Algorithm 2 determines the subsetInst of the bundlebc that is consis-
tent with the variablesVi. This consistent set of valuesInst is then used to instantiate

Input : Vc, Current-Constraint
bundle← nil, the bundle to return
Pc ← NEXT-PARTITION(Pc)
Mark Pc as checked
Push VALUE(Pc) into bundle

P ′
c ← NEXT-PARTITION(Pc)

while P ′
c do

t← tuples ofPc

p← tuples ofP ′
c

if πVf
(t) ≡ πVf

(p) then push VALUE(P ′
c) in bundle

P ′
c ← NEXT-PARTITION(P ′

c)

end
Output : bundle

Algorithm 1: Algorithm to generate the next bundle of Vc.

Vc. This instantiation operation includes the update of the data structuresCurrent-Inst
andProcessed-Values. In particular, the values inProcessed-Values that are lesser than
those associated withPc are deleted.

We can compute all the bundles ofVc by repeatedly calling Algorithm 1, then as-
signing the returned bundle toVc until Algorithm 1 returnsnil. Thus, the algorithm
described here implements a lazy approach for computing thebundles and avoids stor-
ing the entire partition of the domain of every variable.

In the method described aboveProcessed-Values is the data structure that occupies
the most space. Whereas all the other data structures have sizes proportional to the
number of variables (and therefore cause insignificant memory overhead), the size of
Processed-Values depends on the number of tuples and the amount of bundling per-
formed. The worst-case scenario forProcessed-Values occurs when all the values of a
variable are in a single bundle. In this case,Processed-Values will hold all the unique
values of that variable. Suppose that there areN tuples in the relation, the relation hask
attributes, and the number of unique values of the variable is N

l
, wherel is the average

length of each partition ofVc. Then, the size ofProcessed-Values is N
l×k

tuples. How-
ever, if this bundle goes on to form a result tuple, it will save more space than required
for bundling. Even when this bundle fails to yield a result tuple, it still saves on many
comparisons thereby speeding up computation. Our current implementation is a proof
of concept, and we are investigating how to improve its efficiency, possibly by the use
of bit-maps.

5 Join algorithm using bundling

This section shows the use of bundling while computing a joinas a depth-first search.
The join algorithm discussed in this section is based on the Progressive Merge Join.
The technique discussed here can be easily adapted to the simpler sort-merge join since
PMJ is just an extension of sort-merge. We first describe the in-memory join algorithm,
and then place it in the schema of the external join algorithm.

5.1 Join computation in memory

We present here the algorithm to join two sub-sets of relations that are currently in
memory. For the sake of readability, Algorithm 2 is restricted to binary join conditions
(where the join conditions are between two attributes from different relations). It can
be easily extended to join conditions with more than two attributes. Algorithm 2 takes

Input : depth, Current-Solution

while (depth≤| V |) and (depth≥ 1) do
Vc ← Variable[depth]
bc ← next bundle forVc using Algorithm 1
if bc is empty then

BACKTRACK, decrementdepth, and GOTO L1

end
Inst← bc

repeat
foreachVi ∈ Vf connected to Vc by a join-condition constraint do

ConsiderRi the relational constraint that applies toVi

Selectri from Ri according toCurrent-Solution
repeat

Find a bundlebi applying Algorithm 1 onVi andri

if bi is empty then break
Ii ← COMMON(bi, bc)

until Ii is not empty;
if no bi then BACKTRACK, decrementdepth and Goto L1

end
Inst← COMMON(I0, I1, . . ., In)

until Inst is not empty;
InstantiateVc with Inst
Current-Solution[Vc] ← Inst
Incrementdepth
L1:

end
Output : Current-Solution

Algorithm 2: Algorithm to compute the in-memory join using bundling.

as input the level ofVc in the search tree (i.e.,depth) and the current path represented
by the data structureCurrent-Solution. Current-Solution is a record that stores the as-
signed bundles to the variables inVp (note thatCurrent-Solution cannot be obtained
fromCurrent-Inst andProcessed-Values).Variable[] is the array of variables in the same
order as the static ordering of Section 4.1. When BACKTRACK is called the value for
Variable[depth] in Current-Inst is reset, theProcessed-Values for the variable is emp-
tied, the value for the variable inCurrent-Solution is reset, andCurrent-Constraint is
re-computed, thus undoing the effects of the previous instantiation. The function COM-
MON() computes the set of values in the input bundles that are consistent with each other

according to the applicable join-condition constraints. Because this algorithm combines
sorting and constraint propagation with bundling, it produces solutions quickly, which
compensates for the effort spent on bundling.

5.2 The structure of the overall join

We have discussed join computation of tuples that are in memory and now describe the
steps for computing the join of complete relations using ourin-memory join algorithm,
Algorithm 2. The join of the two input relations is computed using an approach similar
to the PMJ, in the two phases shown below.

Sorting phase. The sorting phase is similar to the PMJ, except that for joining the
pages of relations in memory we use the bundling-based technique of Algorithm 2. The
sorting phase produces the early results and also a sorted sub-list or runs of the relations.
These runs are stored back on disk and used in the merging phase of the join. Since the
memory is filled with pages from both the relations, the number of runs generated for
each relation is2N

M
.

Merging phase. In the merging phase, as for the PMJ,M2

4×N
pages from every run

created from the sorting phase are kept in memory. LetP rel
i represent the pages in

memory of relationrel andith run, whererel ∈ {0, 1} andi ∈ {1, 2, . . . , 2N
M
}. We

store one solution each from the join of pages in an array, called solution, defined by
Equation (1).

solution[i][j] = P 0

i 1 P 1

j , i 6= j (1)

The minimum solution fromsolution[][] is the next result of the join. The next solution
from the pages that gave the minimum solution is then computed and used to fill the
corresponding place insolution[][]. A pageP rel

i is removed from memory and replaced
with another page from the same run only if it satisfies the following two conditions for
every pageP 1−rel

j . P rel
i is being joined with: (1) No more join tuples result from

P rel
i 1 P 1−rel

j , and (2) the last tuple inP rel
i is less than that ofP rel

j . The tuples
are compared using the same comparison criteria as the ones used for sorting. These
conditions ensure the tuples are produced in sorted order (during the merging phase)
and that the algorithm is complete.

6 Implementation and experiments

One of the goals of the XXL library [2] is to provide an infrastructure for evaluating
new algorithms in databases. For example, PMJ was evaluatedexperimentally using
this library. In our experience, XXL provides a good infrastructure for building new
database algorithms through its rich cursor algebra built on top of Java’s iterator inter-
face. We implemented our join algorithm by extending the BUFFEREDCURSOR class
of the XXL library.

The current implementation is a proof of concept and offers much room for im-
provement. To show the feasibility of our technique, we tested our join algorithm on
randomly generated relations and on data from a real-world resource allocation prob-
lem in development in our group. For the real-world application, we computed the se-
quence of the natural join of three relations, with respectively 3, 4, and 3 attributes. The
corresponding CSP has 4 variables, with domain size 3, 3, 300, and 250 respectively.
The resulting join of size 69 was compressed down to 32 nestedtuples. For the random
problems, we used relations ofn = 10,000 tuples. We set the page size to 200 tuples and
the available memory size toM = 2N

5
, whereN = 10000/200. We executed the query

of our running example over five such pairs of relations. The result of the query had an
average of 8,500 tuples, signifying that the query was selective. The number of tuples
produced by bundling was reduced to 5,760 bundled tuples, anaverage of 1.48 tuples
per bundle. The number of pages saved was more thanN

4
. Even if the worst-case sce-

nario for the join occurred for every in-memory join (which is a highly unlikely event),
the additional cost due to bundling is given byN

l×k
, whereN

l
is the number of unique

values of an attribute andk is the number of attributes in one relation (which is 3 here).
For the worst case whenl = 1, there are still savings in terms of pages. Again, the
worst-case described here is of the current implementation, which offers much room
for improvement.

7 Related work

The idea of data compression is not new and is used in compressed database systems
[11]. In these systems, data is stored in a compressed formaton disk. It is decompressed
either while loading it into memory or while processing a query. The compression al-
gorithms are applied at the attribute level and are typically dictionary-based techniques,
which are less CPU-intensive than other classical compression techniques [12]. Al-
though most of the work in compressed databases applied to relations with numerical
attributes [11], some work on string attributes has also been done [13]. Another feature
of compressed databases that differs from our approach is that the query results passed
to the next operator are uncompressed and likely to be large.Our work differs from
the above in that we reduce some of the redundancy present between tuples of a given
relation. Our techniques are independent of the data type ofan attribute. Further, the
results of our queries are compacted, thereby assisting thenext operator and reducing
the storage of materialized views on disk. When these compacted results are loaded
into memory for query processing, the de-compaction is effectively cost-free. The only
costs associated with our techniques are those for performing the compaction. Finally,
the compaction is carried out while the query is being evaluated, and is not a distinct
function performed in separation.

In [14], Mamoulis and Papadias present a spatial-join algorithm using mechanisms
of search with forward checking, which are fundamental in Constraint Processing. They
store the relations representing spatial data in R-tree structures and use the structures
to avoid unnecessary operations when computing a join. The constraints under consid-
eration are binary. The key idea is to reduce the computational cost by propagating the
effects of search, thereby detecting failure early. Our technique is not restricted to bi-

nary constraints, and is applicable to constraints of any arity. Further, it differs from the
approach of Mamoulis and Papadias in that it reduces I/O operation and compacts join
results in addition to reducing computational operations.

Bernstein and Chiu [15], Wallace et al. [16], Bayardo [17], Miranker et al. [18]
exploit the standard consistency checking techniques of Constraint Processing to re-
duce the number of the intermediate tuples of a sequence of joins. While Wallace et
al. consider Datalog queries, Bayardo and Miranker et al. study relational and object-
oriented databases. Our CSP model of join query differs fromtheir work in that the
constraints in our model include both relational and join-condition constraints, whereas
the latter models the relational constraints as CSP variables and only the join-condition
constraints as CSP constraints. Thus, our model is finer in that it allows a more flexi-
ble ordering of the variables of the CSP, which increases theperformance of bundling.
Finally, Rich et al. [19] propose to group the tuples with thesame value of the join
attribute (redundant value). Their approach does not bundle up the values of the join
attribute or exploit that redundancies that may be present in the grouped sub-relations.

8 Conclusions and Future work

We described a new method for computing interchangeabilityand use it in a new join
algorithm, thus establishing the usefulness of dynamic bundling techniques for join
computation. In the future, we plan to address the followingthe issues:

– Refine our implementation by the use of lighter data structures.
– Test the usefulness of these techniques in the context of constraint databases where

the value of an attribute is a continuous interval such as spatial databases [20].
– Conduct thorough evaluations of overall performance and overhead (memory and

cpu) on different data distributions. And,
– Investigate the benefit of using bundling for query size estimation and materialized

views.

Acknowledgments

This work is supported by the Maude Hammond Fling Faculty Research Fellowship
and CAREER Award #0133568 from the National Science Foundation. We are grateful
to the reviewers for their comments.

References

1. Dittrich, J.P., Seeger, B., Taylor, D.S., Widmayer, P.: On Producing Join Results Early. In:
22nd ACM Symposium on Principles of Database Systems. (2003) 134–142

2. den Bercken, J.V., Blohsfeld, B., Dittrich, J.P., Krämer, J., Schäfer, T., Schneider, M.,
Seeger, B.: XXL–A Library Approach to Supporting Efficient Implementations of Advanced
Database Queries. In: 27th International Conference on Very Large Data Bases. (2001) 39–
48

3. Rossi, F., Petrie, C., Dhar, V.: On the Equivalence of Constraint Satisfaction Problems. In:
Proc. of the 9th ECAI, Stockholm, Sweden (1990) 550–556

4. Bacchus, F., van Beek, P.: On the Conversion between Non-Binary and Binary Constraint
Satisfaction Problems Using the Hidden Variable Method. In: Proc. of AAAI-98, Madison,
Wisconsin (1998) 311–318

5. Bessière, C., Meseguer, P., Freuder, E.C., Larrosa, J.:On Forward Checking for Non-binary
Constraint Satisfaction. Artificial Intelligence141 (1-2)(2002) 205–224

6. Beckwith, A.M., Choueiry, B.Y., Zou, H.: How the Level of Interchangeability Embedded in
a Finite Constraint Satisfaction Problem Affects the Performance of Search. In: AI 2001: Ad-
vances in Artificial Intelligence, 14th Australian Joint Conference on Artificial Intelligence.
LNAI Vol. 2256, Adelaide, Australia, Springer Verlag (2001) 50–61

7. Choueiry, B.Y., Davis, A.M.: Dynamic Bundling: Less Effort for More Solutions. In Koenig,
S., Holte, R., eds.: 5th International Symposium on Abstraction, Reformulation and Approx-
imation (SARA 2002). Volume 2371 of Lecture Notes in Artificial Intelligence., Springer
Verlag (2002) 64–82

8. Lal, A., Choueiry, B.Y.: Dynamic Detection and Exploitation of Value Symmetries for Non-
Binary Finite CSPs. In: Third International Workshop on Symmetry in Constraint Satisfac-
tion Problems (SymCon’03), Kinsale, County Cork, Ireland (2003) 112–126

9. Freuder, E.C.: Eliminating Interchangeable Values in Constraint Satisfaction Problems. In:
Proc. of AAAI-91, Anaheim, CA (1991) 227–233

10. Haselböck, A.: Exploiting Interchangeabilities in Constraint Satisfaction Problems. In: Proc.
of the 13th IJCAI, Chambéry, France (1993) 282–287

11. Roth, M.A., Horn, S.J.V.: Database compression. SIGMODRecord22 (1993) 31–39
12. Westmann, T., Kossmann, D., Helmer, S., Moerkotte, G.: The implementation and perfor-

mance of compressed databases. SIGMOD Record29 (2000) 55–67
13. Chen, Z., Gehrke, J., Korn, F.: Query optimization in compressed database systems. In: 2001

ACM International Conference on Management of Data (SIGMOD). (2001) 271–282
14. Mamoulis, N., Papadias, D.: Constraint-based Algorithms for Computing Clique Intersection

Joins. In: Sixth ACM International Symposium on Advances inGeographic Information
Systems. (1998) 118–123

15. Bernstein, P.A., Chiu, D.M.W.: Using semi-joins to solve relational queries. J. ACM28
(1981) 25–40

16. Wallace, M., Bressan, S., Provost, T.L.: Magic checking: Constraint checking for database
query optimization. In: CDB 1995. (1995) 148–166

17. Bayardo, R.J.: Processing Multi-Join Queries. PhD thesis, University of Texas, Austin
(1996)

18. Miranker, D.P., Bayardo, R.J., Samoladas, V.: Query evaluation as constraint search; an
overview of early results. In Gaede, V., Brodsky, A., Günther, O., Srivastava, D., Vianu, V.,
Wallace, M., eds.: Second International Workshop on Constraint Database Systems (CDB
’97). LNCS 1191, Springer (1997) 53–63

19. Rich, C., Rosenthal, A., Scholl, M.H.: Reducing duplicate work in relational join(s): A
unified approach. In: International Conference on Information Systems and Management of
Data. (1993) 87–102

20. Revesz, P.: Introduction to Constraint Databases. Springer-Verlag, New York (2001)

