
Reformulating Constraint Satisfaction Problems to
Improve Scalability

Kenneth M. Bayer1, Martin Michalowski2, Berthe Y. Choueiry1,2, Craig A. Knoblock2

1 Constraint Systems Laboratory, University of Nebraska-Lincoln
{kbayer,choueiry}@cse.unl.edu

2 University of Southern California, Information Sciences Institute
{martinm,knoblock}@isi.edu

Abstract. Constraint Programming is a powerful approach for modelingand
solving many combinatorial problems, scalability, however, remains an issue in
practice. Abstraction and reformulation techniques are often sought to overcome
the complexity barrier. In this paper we introduce four reformulation techniques
that operate on the various components of a Constraint Satisfaction Problem
(CSP) in order to reduce the cost of problem solving and facilitate scalability.
Our reformulations modify one or more component of the CSP (i.e., the query,
variables domains, constraints) and detect symmetrical solutions to avoid gener-
ating them. We describe each of these reformulations in the context of CSPs, then
evaluate their performance and effects in on the building identification problem
introduced by Michalowski and Knoblock[1].

1 Introduction

Choueiry et al.[2] proposed to characterize a reformulation as a transformation of a
problemP from one encoding to another, where a problem is given by aformulation
and aquery, P = 〈F ,Q〉. The transformation may change the query and/or any of the
components of the formulation. The goal of the transformation is to ‘simplify’ problem
solving, where the benefit of the ‘simplification’ and other effects of the transformation
are clearly articulated in the particular problem-solvingcontext.

In this paper, we propose four reformulation techniques that operate on various
aspects of a Constraint Satisfaction Problem (CSP) in orderto improve the performance
of problem solving. The problem formulation of a CSP is givenbyF = (V ,D, C) where
V= {Vi} is a set of variables,D= {DVi

} the set of their respective domains, andC a
set of constraints. A constraint is a relation over a subset of the variables specifying
the allowable combinations of values for the variables in its scope. A solution is an
assignment to the variables such that all constraints are satisfied. The query is usually
to find one satisfying solution, in which case the problem is in NP-complete in general.
Alternatively, the query could be to find all possible solutions.

In this paper, we describe a reformulation of a CSP as a transformation of the orig-
inal problemPo = 〈Fo,Qo〉 into the reformulated problemPr = 〈Fr,Qr〉, where
Fi indicates a formulation andQi indicates a query, as illustrated in Figure 1. While
our reformulations apply to a variety of resource allocation problems, in this paper
we describe their application to the building identification problem (BID) proposed
by Michalowski and Knoblock[1]. The task is to assign a list of postal addresses to

2

rP

oQQuery:

oP

o=(V o,Do,C)F o r=(V r ,Dr ,C)F rFormulation:
Query: rQ

ReformulationFormulation:

Fig. 1. The general pattern of a CSP transformation.

buildings appearing in a satellite image. A map provides thenames of the streets and
the positions of the buildings, but we do not know the addresses of the buildings or,
for a building located on a street corner, on which street thebuilding’s address lies.
The original work established the feasibility of modeling and solving this problem as
a CSP. However, their work did not scale well to larger problems [1]. We show that
the reformulations we introduce allow us to solve larger problems. The largest problem
solved by Michalowski and Knoblock included 34 buildings. In this paper, we scale up
to problems involving 206 buildings.

This paper is structured as follows. In Section 2 we introduce a new type of global
constraint and describe how to use symbolic values to reformulate the domains of vari-
ables in the scope of this constraint. In Section 3 we presenta reformulated query that
reduces runtime in practice. In Section 4 we describe how relaxing an assignment prob-
lem into a matching problem can be used to improve the performance of backtrack
search used to solve the assignment problem. We also describe a symmetry detection
process for generating all solutions to a maximum matching in a bipartite graph from a
single solution to the matching. In Section 5 we apply these techniques to the building
identification problem (BID). We present experimental results that demonstrate their ef-
fectiveness in Section 6. Section 7 discusses related reformulation work and Section 8
contains our conclusions and future research directions.

2 Domain reformulation using symbolic values

We propose ALL DIFF-ATMOST as a global constraint useful for resource allocation
problems. In this section we first describe this constraint.We then discuss how to re-
formulate the domains of the variables in the scope of this constraint in order to reduce
their size both for general and totally ordered domains. Section 5.2 illustrates the use of
this constraint and its reformulation in a practical resource allocation problem.

2.1 ALL DIFF-ATMOST

Example 1. An emerging country received an aid to build 7 hospitals on its territory,
but does not want to put more than 2 hospitals in areas with high volcanic activity.

We propose the constraint ALL DIFF-ATMOST to model this situation. Given a set of
variablesA = {V1, V2, ..., Vn} with domainsDVi

, ALL DIFF-ATMOST(A, k, d), where
d⊆DVi

, k∈N, andk≤|d|, requires that (1) all variables be different and (2) at mostk

variables inA have values fromd. Note that while the domainsDVi
may be different,d

must be a subset of each one of them andDVi
, andd andDVi

may be finite or infinite.

Example 2. Consider with the variablesA={V1, V2, V3, V4} of a CSP, withDi={1,
2, . . . , 8} and the constraintALL DIFF-ATMOST(A, 2, {1, 3, 4, 5, 8}). The assignment
V1←5, V2←2, V3←7, V4←4, andV5←3 satisfies the constraint.

3

2.2 ALL DIFF-ATMOST reformulation

Our first reformulation technique applies to the ALL DIFF-ATMOST and the domains
of the variables in its scope. The transformation, which we describe next, is theorem
constant, in the sense that solutions to the reformulated problem map to solutions to
the original problem[3]. The benefit of this reformulation is the reduction of the do-
main sizes. Because the complexity of many CP techniques depends on the sizes of the
domains, the reformulation improves the solver performance.

We reformulate the domains of the variables in the scope of the constraint ALL DIFF-
ATMOST(A, k, d) by introducingk valuessl that we callsymbolic valuesas follows:

∀Vi ∈ A DVir
= {s1, s2, . . . , sk} ∪ (DVi

\ d) (1)

where the symbolic valuessj (1 ≤ j ≤ k) can take any distinct values ind. Applying
this reformulation on Example 2 yields the following domains for all four variables:
DVi

={s1, s2, 2, 6, 7}, wheres1, s2 can take any different values in{1, 3, 4, 5, 8}. In
Example 1, the domains become{s1, s2} ∪ {sites in non-volcanic areas} wheres1, s2

are different and range over sites with volcanic activities.
This reformulation procedure operates on the problem formulation and affects both

the ALL DIFF-ATMOST constraints and the domains of the variables in their scope,see
Figure 2. However the most significant modification is the domain reformulation. We
transformDo to Dr, where inDr the domains of variables inA are reformulated ac-
cording to Equation (1). Replacingd in the original domains withk symbolic values
reduces their sizes by|d| − k, which is useful whend is large or infinite.

=(V o,C)oo o,DF

oP
rF

rD

rC

Pr

Formulation:
Formulation:

: Replace AllDiff−Atmost with AllDiff
: Smaller domains with symbolic values

Fig. 2. The reformulation of ALL DIFF-ATMOST.

This operation is particularly useful during backtrack search where the domain val-
ues are enumerated. If we want to assign ‘ground’ values to each symbolic value, we
can do so as a post-processing step while ensuring that two symbolic values are always
mapped back to distinct ground values. While a solution to the reformulated problem
does not map to a unique solution to the original problem, we can generate any solution
to the original problem from some solution to the reformulated problem.

Of particular concern is the interaction between this reformulation and the other
constraints in the problem. When all the constraints in a problem can be checked on
the symbolic values, as in the case of the BID, the reformulation is sound. When one or
more constraints in a problem must be checked on the ‘ground’values, then propagation
must run on the appropriate representation for each constraint and, as soon as domain
filtering causes|d| ≤ k, then reformulated domains should be dropped and ALL DIFF-
ATMOST replaced with a ALL DIFF constraint.

2.3 Symbolic intervals

When the values in the variables domains follow a total order, as in numeric domains,
the domains are commonly represented as intervals and constraint propagation is typ-

4

ically restricted to the endpoints of these intervals, as inbox-consistency algorithms.
The reformulation of an ALL DIFF-ATMOST in the presence of totally ordered domains
obviously remains valid. However, in order torestrict propagation to the endpoints of
the intervalsrepresenting the domains, the following is needed:

1. We require the values ind to form a convex interval.
2. We must add ordering constraints between two consecutivesi: s1 < s2 < . . . < sk.
3. We must add total ordering constraints between the two extreme symbolic values,

s1 andsk, and their closest neighbors in the reformulated domains, which is ac-
complished as follows. LetDl

Vir
andDr

Vir
be respectively the intervals ofDVi

\d

to the left and right of, and adjacent to,d. The right endpoint ofDl
Vir

must be less
thans1, and the left endpoint ofDr

Vir
must be greater thansk. See Figure 3.

{ }
i

Do
Vi

VDref
i

D= V
ref,l Dref,r

Vi
, ,1 2 , ... ks ss

...

d

∪∪

Fig. 3. ALL DIFF-ATMOST reformulation for totally ordered domains.

4. When mapping the symbolic values back to ground values, the ground values must
respect the total ordering imposed on the symbolic values.

Section 5.2 illustrates the use of ALL DIFF-ATMOST and its reformulation on the BID.

3 Query Reformulation

In a CSP, the query is usually to find a single solution (satisfiability problem) or all solu-
tions (enumeration problem). However, in some applications, we may not be interested
in entire solutions, but rather all the values that each variable takes in any solution. We
call the problem corresponding to this query aper-variable solutions.3 Thus, we re-
formulate the query fromQo, enumerating all solutions, toQr, finding a per-variable
solution. Formally, we defineQr as∀Vi, x ∈ DVi

, find if Po ∧ (Vi ← x) is satis-
fiable. Figure 4 illustrates this reformulation. This reformulation changes the problem,
because the solution returned will be different. However, in some cases, the per-variable
solution is an acceptable alternative. This transformation changes the complexity class
of the problem from a counting problem to a satisfiability one.

oQ

oP
Query: = Enumerate all solutions
The problem is a counting problem

rQ

rP
Query: = Find a per−variable solution
The problem is a satisfiability problem

Fig. 4. Query reformulation.

In this section we propose an algorithm to find per-variable solutions, and describe
how this algorithm can be used to enforce high levels of relational consistency.

3 Formally, this query corresponds to finding the minimal CSP.

5

3.1 Per-variable solutions

We can find the set of possible assignments to each variable ina CSP by solving the
enumeration problem, that is finding all solutions and then iterating through the solution
set to collect the values taken by each variable. However, the number of solutions to a
CSP isO(dn), wheren is the number of variables andd is the maximum domain size.
Thus, finding all solutions may be prohibitively expensive.

We replace the query of finding all solutions (an enumerationproblem) with the
query of finding if a solution exists for every combination ofvariable-value pair (a
polynomial number of satisfiability problems). Algorithm 1tests for every variable-
value pair(Vi, x) if the CSP withVi←x is solvable. When a solution exist,x is added
to the data structure returned by the algorithm. The algorithm returns the set of variables
along with all their values that appear in a solution.

Input : P =(V,D, C)
Output : S, a per-variable solution
foreachVi ∈ V do1

S[Vi]← ∅2

end3

foreachVi ∈ V do4

foreach x ∈ DVi
do5

if P with Vi←x has a solutionthen6

S[Vi]← S[Vi] ∪ {x}7

end8

end9

if |S[v]| = 0 then10

return P has no solutions11

end12

end13

return S14

Algorithm 1 : Finding the per-variable solutions.

The inner loop of the algorithm runsO(nd) times. Each iteration requires deter-
mining the satisfiability of a CSP. This operation appears costly, but in cases where
the original CSP has significantly more thannd solutions, Algorithm 1 can perform
significantly better than enumerating all solutions to the CSP.

3.2 Relational consistency

When solving a CSP, it is often beneficial to make the constraint network arc-consistent.
Enforcing arc-consistency filters values from the variabledomains that cannot exist in
any solution to the problem. We can perform even more filtering by considering higher
levels of consistency. Dechter and van Beek introducedrelational (i, m)-consistency
as the consistency ofm non-binary constraints over every subset ofi variables in the
CSP[4]. Dechter[5] proposed the algorithmRC(i,m) for computing relational(i, m)-
consistency.RC(i,m) works as follows. For every setCm of m constraints in a con-
straint network, compute the join of them constraints and project the result onto each
subset ofi variables. The algorithm is not practical for high values ofm, because the

6

memory requirements for computing and storing a join ofm constraints rises exponen-
tially with the number of variables.

Algorithm 1 computes a minimal network, which means that every value remain-
ing in the network appears in at least one solution. Thus, theresulting network is the
same as if we had executedRC(1,m). The difference between the two algorithms is that
Algorithm 1 is polynomial space, whereasRC(1,m) is exponential space. We could gen-
eralize Algorithm 1 to consider sets of up toi variables rather than unique ones. This
extension would allow the algorithm to produce the same results asRC(i,m), where the
memory requirement rises withi, which quickly becomes impractical.

4 Constraint relaxation for problem reformulation

At the core of many resource allocation problems lies the problem of matching between
the elements of two sets: the tasks and the resources. In general, the problem may be
complex (and likely intractable). However, in some cases, we may be able to identify
constraints that can be removed to reduce the original problem into a matching problem
in a bipartite graph.

Removing (or adding) a constraint in a problem formulation to yield a necessary (or
sufficient) tractable approximation of the problem is a typical reformulation strategy.
Examples abound and include: In AI, admissible heuristics generation for A∗ [6] and
theory approximation[7]; in mathematical programming, linear relaxation of integer
programs, Lagrangian relaxation[8], and the cutting-plane method.

In this section we first describe the relaxation of a resourceallocation problem into a
matching problem in a bipartite graph. Then, we describe techniques that take advantage
of this reformulation when performing search for solving a CSP. Finally, we describe a
symmetry detection technique that allows us to generates all the possible matchings in
a bipartite graph from a single matching.

4.1 Matching as a relaxation

Let G = (X ∪ Y, E) be a bipartite graph with edge setE, vertex setV = X ∪ Y , and
partitionsX andY , which are independent sets of vertices. We define amatch count
for each vertex inv ∈ V , which we denotem(v), to be a positive (non-null) integer. A
matchingin G is a set of edgesM ⊆ E such that∀v ∈ V there exists at most one edge
e ∈ M incident tov. In this paper we consider a matching inG to be a set of edges
M ⊆ E such that∀v ∈ V there exists at mostm(v) edgese ∈M incident tov. Further,
we say that a matchingM saturates vertexv iff M has exactlym(v) edges incident tov;
and a matchingM saturates a setS iff M saturates all vertices inS. Finding a matching
that saturatesS can be done in polynomial time (see Section 5.5).

We propose to reformulate a resource allocation problem by relaxing it into a match-
ing problem in a bipartite graph that saturates one of the graph’s two partitions. Figure 5
illustrates this relaxation. While the original problem may be intractable, the reformu-
lated one can be efficiently solved (i.e., in polynomial time). When the reformulated
problem is not solvable, the more constrained original problem is not solvable. How-
ever, the solvability of the reformulated problem does not guarantee that of the original
problem. Our reformulation is thus a necessary approximation[9].

7

Po Pr

o=(V o,Do,C)oFFormulation:
Query:Q o = Is the problem satisfiable?

Formulation:
Query:Q r = Is there a matching saturating a partition of V?

G = (V,E)

Fig. 5. Relaxation of a CSP as a matching problem.

4.2 Integrating the matching relaxation in backtrack search

When modeling a resource allocation problem as a CSP and solving it with backtrack
search, we can take advantage of the relaxed problem in two ways:

1. As apreprocessing stepprior to search, and
2. As a lookahead mechanismduring search to filter out, from the domains of the

future variables, those values that cannot yield a solution.

Prior to search, if we determine that the relaxed problem is not soluble, we can safely
avoid using search. Further, during search, we can adapt thealgorithm of Régin[10],
which finds all edges of the bipartite graph that do not participate inanycovering match-
ing, to identify, in one step, all values in the domains of allfuture variables that do not
participate in any saturating matching. This single operation allows us to filter the do-
mains of all future variables in one step.

The reformulation into a matching problem is especially useful when finding per-
variable solutions, because Algorithm 1 executesnd satisfiability tests. We propose to
test, after line 5 in Algorithm 1, whether the relaxed problem is solvable, and proceed
to line 6 only if this test succeeds. Otherwise, we return to line 5.

4.3 Generating solutions by symmetry

The set of maximum matchings in a bipartite graph can be obtained by enumerating all
maximum matchings using an algorithm such as the one proposed by Uno[11]. In this
section, we characterize all maximum matchings in a bipartite graph as symmetric to a
single base matching, and proposed to use this symmetry to enumerate all solutions.

Our symmetry detection relies on two graph constructions described by Berge[12]:
alternating cycles(AltCyc) andeven alternating paths starting at a free vertex(EvAltP).
An AltCyc or EvAltP in a graphG relative to a matchingM alternate between edges
in M and edges not inM . If we take a maximum matchingM and a AltCyc or EvAltP
P , we can produce another maximum matchingM ′ by computing the symmetric dif-
ference ofM andP , denotedM∆P . We use that mechanism to identify all maximum
matchings in a bipartite graphG as symmetric of a single maximum matchingM . Let
S be the set of all AltCyc’s and EvAltP’s relative toM . We construct another maximum
matchingMi by choosing a disjoint subsetSi ⊆ S and computingM∆Si. Mi is sym-
metrical toM in that it is identical toM in all edges except those inSi. In fact, for any
maximum matchingMj of G, we prove that there exists anSj such thatMj = M∆Sj

using Lemma 3.1.9 of[13]. We generateS by first orientingG using the construction
described by Hopcroft and Karp[14]. From the oriented graph, we enumerate the al-
ternating paths by finding all EvAltP’s, as defined by Berge[12]. We enumerate the
AltCyc’s from the strongly connected components in the oriented graph as described

8

by Régin[10]. Thus, to store the information necessary to enumerate all alternating
paths and cycles, and therefore all maximum matchings, we only need to store a single
base matching, the set of free vertices, and the set of strongly connected components4.

Consider the bipartite graphG = (X ∪ Y, E), whereX = {x1, x2, x3, x4}, Y =
{y1, y2, y3}, andE={(x1, y1), (x2, y1), (x2, y2), (x3, y2), (x3, y3), (x4, y2), (x4, y3)}.
Figure 6 (a) shows a maximum matchingM in G. P = x1y1x2 is an alternating path
andC = x3y2x4y3x3 is an alternating cycle. We find other maximum matchings using
the symmetric difference operator. Figure 6 (b) showM∆P , Figure 6 (c) showsM∆C,
and Figure 6 (d) showsM∆(C ∪ P).

1x

x2

x3

4x

X

y3

Y

y1

y2

(a)

y3

1x

x2

x3

4x
(b)

Y

y1

y2

X

1x

x2

x3

4x

X

y3

(c)

Y

y1

y2

1x

x2

x3

4x

X

y3

(d)

Y

y1

y2

Fig. 6. Multiple matchings saturatingY .

Formulation:
−A maximum matchingM
−The set of strongly connected components in the oriented graph
−The set of free vertices in the oriented graph

Formulation:
Query:Q r = Enumerate all maximum matchings in G

G = (V,E)
oP Pr1

Pr2

Formulation: The set of all maximum matchings in G

Uno’s algorithm

Fig. 7.Finding all maximum matchings.

Figure 7 illustrates the two reformulations ofPo, the problem of enumerating all
maximum matchings. We can reformulatePo asPr1, the set of all maximum match-
ings, using Uno’s algorithm. Alternatively, we can reformulate the problem asPr2, a
base matching and its corresponding sets of strongly connected components and free
vertices. All matchings can be enumerated fromPr2 as needed. Our construction has
the same time complexity as Uno’s, which is linear in the number of maximum match-
ing. However, our characterization of the solutions as symmetries is a valuable one:

1. It provides a more compact representation of the set of solutions. Rather than stor-
ing all matchings, we store a single matching, a set of strongly connected compo-
nents, and a set of free vertices.

2. In case one is indeed seekingall, or a given number of, the solutions to BID (sim-
ilarly, to a resource allocation problem that has a maximum matching relaxation),
we can generate every symmetric to that known single matching and test if it sat-
isfies the additional constraints of the non-relaxed problem, when it does not, the
matching is a solution to the non-relaxed problem found without search. Naturally,
the number of maximum matchings can be large.

We do not currently exploit those features, but they deservefurther investigations.

5 Application to the building identification problem

We apply the four techniques presented above to the BID[1]. The task is to assign a
list of addresses from a phone book to buildings appearing ina satellite image. Each
address consists of the combination of a street name and a number. A map provides the

4 An improvement suggested by a anonymous reviewer.

9

names of the streets and the positions of the buildings. The map could come from an
online source or a satellite image. We know the street names and the positions of the
buildings, but we do not know the addresses of the buildings or, for a building located
on a street corner, on which street the building’s address lies. A variety of data sources,
such as a phone books, gazetteers, or property records, provide at least a partial list of
addresses in a region. We generically refer to the addressesgiven as input as phone-book
addresses regardless of their actual source. Figure 8 showsa BID instance.

B6

B3

B8

B4

B9

B1
S1#1, S1#4,
S1#8, S2#7,
S2#8, S3#1,
S3#2, S3#3,

S3#15, S3#18

B2

B5
B7 B10

= Building
= Corner building

Si = Street

S1 S2

S3

Fig. 8. An example of the BID problem.

In general, the phone book may be incomplete, listing fewer addresses than there
are buildings in the image, but the reverse does not hold. We must map every phone-
book address to a building in the image. Michalowski and Knoblock established the
feasibility of modeling and solving this problem as a CSP. However, their work did not
scale well to larger problems. We show in Section 6 that the reformulations we propose
allow us to solve larger problems.

5.1 CSP model

Below we describe the variables and constraints in our CSP model of the BID, which
improves on the one proposed in[1].

Our model uses three types of variables:orientationvariables,cornervariables, and
buildingvariables. In general, there are four Booleanorientation variables: Increasing-
North, IncreasingEast, OddOnEastSide, and OddOnNorthSide. The first two areor-
deringvariables and indicate whether or not addresses increase invalue when moving
toward the north and to the east. The remaining two areparity variables and indicate on
which side of the street odd addresses occur. Thecorner variablesrepresent the pos-
siblestreetson which a corner building might be. We generate one corner variable for
each corner building, whose domain is the list of streets on which the building could
lie, and has size 2 in most cases. The corner buildings are natural ‘articulations’ in the
constraint network: once the solver assigns values to all corner buildings, the constraint
network degenerates into a set of chains (corresponding to buildings along street seg-
ments) that can be solved in a backtrack-free manner. Michalowski and Knoblock too
noted this feature[1]. Thus, the solver instantiates corner buildings as soon as possi-
ble. Thebuilding variablesrepresent the addresses (i.e., numbers) of the buildings. We
generate a building variable for every building on the map. The domain of a variable is
every possible address on the building’s streets.

Our model has five types of constraints:parity, ordering, corner, phone book, and
grid. Parity constraintsare binary constraints and ensure that the numbers assigned

10

to buildings respect the values assigned to the parity (orientation) variables.Order-
ing constraintsare ternary constraints, and link an ordering variable to two building
variables along the same street. These constraints ensure that the addresses assigned to
the building variables respect the ordering specified by theordering variable.Corner
constraintslink the the corner and building variables of a corner building and ensure
that the address assigned to the building is consistent withthe street chosen for the
building. Phone-book constraintsexist for each street on the map. These constraints
ensure that the solver assigns every address in the phone book to some building along
that street. These constraints usually have a high arity, because their scope is the set
of buildings along the street.Grid constraintsexist between buildings across certain
artificial grid-lines, depending on the region we are modeling. These constraints ensure
that the addresses of adjacent buildings across the grid-lines are in separate numeric
increments. For example, in many cities in the United States, addresses increase to the
next increment of 100 across intersections.

5.2 Symbolic values

If the phone book is incomplete, we must infer the missing numbers to add to the vari-
ables’ domains. Michalowski and Knoblock proposed to enumerate all numbers be-
tween 1 and the largest address that appears on the street[1]. Their approach has two
problems. First, the choice of the upper limit is arbitrary.When the largest address is
not in the phone book, this approach may yield incorrect solutions. The second prob-
lem with this approach is that the size of the domains becomesprohibitively large on
real-world data. Using symbolic values in phone-book constraint solves both problems.

Let S be a street,PS its set of phone-book addresses of a given parity,BS the set of
buildings on the side ofS of that parity, and [min,max] the range of address numbers on
that side ofS. The address numbers inPS partition [min,max] into consecutive convex
intervals. In any such interval (i1, i2), we cannot use more than|BS |−|PS | addresses,
which we express as ALL DIFF-ATMOST(BS, ka, (i1, i2)) with ka=minimum(|BS|-
|PS |, ⌊

(i2−i1)−1
2 ⌋). We reduce the variables’ domains using the reformulation of Sec-

tion 2 on each of these intervals. For example, assume we have, on the even side of
S, BS={B1, B2, . . ., B5}, PS={S#12,S#18}, min=2, and max=624. An assignment
cannot use more than 3 numbers in each of [2,12), ([12,18), and (18,624], yielding 3
ALL DIFF-ATMOST constraints with the following arguments (BS , 3, [2,12)), (BS , 2,
(12,18)), and (BS , 3, (18,624]). We replace the domain [1,624] of each variable with
the significantly smaller set{s1, s2, s3, 12,s4, s5, 18,s6, s7, s8} wheres1, s2, s3 ∈
[2,12),s4, s5 ∈ (12,18), ands6, s7, s8 ∈ (18,624] andsi<sj for i<j, see Figure 9. This
process allows us to choose an arbitrarily large upper bound(max) on a given street.

{s 1, s2, s3, 12, s4, s5, 18, s6, s7, s8 }

{2, 4, ..., 8, 10, 12, 14, 16, 18, 20, 22, ..., 622, 624 }Original Domain

Reformulated Domain

Fig. 9. Domain reformulation for the BID.

11

5.3 Query reformulation

Another challenge of real-world BID instances is the large number of solutions. If the
phone book is incomplete, the problem is under-constrained, yielding a large number
of solutions. One possible query would be to enumerate all the solutions to collect
the acceptable list of addresses for each building[1]. By reformulating the query as
proposed in Section 3, we can use Algorithm 1 to obtain the same result at a much
cheaper cost. In summary, we replace the query: “Enumerate all solutions and collect
the addresses taken by the buildings in these solutions” with the query “Find all the
addresses that a given building can take.”

5.4 Constraint relaxation for problem reformulation

We show below that, when no grid constraints exist, the BID problem can be mod-
eled as a matching in a bipartite graph, and is thus tractable. The CSP approach of
Michalowski and Knoblock remains pertinent in that it allows one to represent arbitrary
street-addressing schemas used around the world, such as grid constraints. We propose
the removal of grid constraints as a tractable relaxation ofthe BID.

Given an instance of this problem without grid constraints,we construct a bipartite
graphG = (B ∪ S, E) as follows. First, assume an assignment to the orientation vari-
ables (there are 24 such assignments). For each buildingβ in the problem, add a vertex
b to B. For each streetσ in the problem, add two verticessodd andseven to S, one for
each side of the street. For each buildingβ, add an edge between vertexb and the street
vertex corresponding to the street side on whichβ may be. (Note that corner buildings
are on two streets.) Assuming odd numbers appear on the Northand West sides of the
street, Figure 10 shows the construction ofG for the map in Figure 8. We can show
that a matching in this graph that saturatesS corresponds to a satisfactory assignment
of streets to corner buildings.

B5 B6 B7 B8 B9 B10B4B3B2B1

S2_evenS2_odd S3_odd S3_evenS1_evenS1_odd

Fig. 10.Graph construction for Figure 8.

S2_odd
(1)

S2_even
(1)

S3_odd
(3)

S3_even
(2)

S1_odd
(1)

S1_even
(2)

B2
(1)

B3
(1)

B4
(1)

B5
(1)

B6
(1)

B7
(1)

B8
(1)

B9
(1)(1)

B1 B10
(1)

Fig. 11.Satisfying matching for Figure 10.

Figure 11 shows a satisfying matching for the graph from Figure 10, where the
edges included in the matching are darkened. The numbers in parentheses indicate the
match count of the vertex. This matching corresponds to an assignment of buildings to
streets. Thus, we can now construct a solution to the problemas a post-processing step,
where we simply assign numbers to each building along each street.

While the matching approach is powerful, it cannot model thegrid constraint. Whether
the problem with the grid constraints can be solved efficiently remains an open question.

12

We propose to use the matching in 2 ways: (1) directly solve problems that have no grid
constraints, and (2) use the relaxation to detect unsolvability (both as a preprocessing
step and for lookahead as discussed in Section 4).

5.5 Solvers

It was simply impossible to solve any of our real-world data sets using the original
query. We could solve them only with the reformulated query,using Algorithm 1.

We implemented two solvers: a matching-based solver and a search-based solver.
The former finds a maximum matching using anO(n5/2) algorithm by Hopcroft and
Karp [14] after replacing each vertex in the bipartite graph by as manyvertices as its
match count. The latter uses backtrack search (BT) with nFC3, a look-ahead strategy for
non-binary CSPs[15], and conflict-directed backjumping[16]. In BT, we implemented
a hybrid representation of the domains: enumerated values and intervals. We use the
interval representation to propagate ordering constraints (i.e., less-than constraints), and
restrict this propagation to the bounds of the intervals without loss of pruning power.
This representation improved our runtime by one order of magnitude.

When the problem given as input has no grid constraint, we usethe matching solver
in line 6 of Algorithm 1, which computes one matching in each of the nd loops. Thus,
the solver runs in polynomial time, which is a significant improvement compared with
the exponential-time backtrack search based solver. When the problem instance has grid
constraints, we proceed as follows:

1. Preprocessing: We insert a call to the matching solver after line 5 in Algorithm 1
and proceed to line 6 if we find a matching, otherwise return toline 5.

2. Backtrack search (BT): We use the search-based solver in line 6.
3. Lookahead: In addition to nFC3, we filter in one step the domains of all future

variables given the current path in the search (see Section 4).
Figure 12 illustrates the behavior of the solvers.

6 Experiments

Table 1 describes the properties of the regions of the city ofEl Segundo (CA), on which
we ran our experiments. The number of calls refers to the total number of times to line 6
of Algorithm 1. Each call to line 6 was timed out after one hour. We report the number
of timed out executions.

The completeness of the phone book indicates what percent ofthe buildings on the
map have a corresponding address in the phone book. We created the complete phone
books using property-tax data, and the incomplete phone books using the real-world
phone-book.

Effect of domain reformulation.Table 2 shows the benefit of domain reformulation
by comparing the performance when using the original domains or the reformulated
domains. The experiment uses backtrack search (BT), but does not take into consider-
ation the grid constraints. When the phone book is complete,no ALL DIFF-ATMOST

constraints are present, and thus the reformulation does nothing. The advantage of the
reformulation is clear when using the incomplete phone book.

13

only orientation and corner variables

Build the matching model

saturating matching
Does a

exist?

Does the
problem contain grid

constraints?

Build the CSP model
− Domain reformulation

Execute the matching solver

Execute backtrack search

−Special variable ordering: instantiates
−Lookahead with nFC3

−Lookahead using matching relaxation
−Domains implemented as a list of intervals

−MAC−CBJ

Yes

Yes

No

No

satisfiable?
Is the CSP

Yes

No

No solution exists

No solution exists

A BID instance + vvp

Solution exists
Fig. 12. Implementing Line 6 of Algorithm 1.

Table 1.Case studies used in experiments.
Case study Phone book Number of

completenessbldgs crnr bldgs blks calls
NSeg125-c 100.0% 4160
NSeg125-i 45.6%

125 17 4
1857

NSeg206-c 100.0% 4879
NSeg206-i 50.5%

206 28 7
10009

SSeg131-c 100.0% 3833
SSeg131-i 60.3%

131 36 8
2375

SSeg178-c 100.0% 4852
SSeg178-i 65.6%

178 46 12
2477

Table 2.Effect of domain reformulation.
Case studyAvg. domain size Runtime [sec] Timeouts

Orig. Ref. Orig. Ref. Orig. Ref.
NSeg125-i 1103.1 236.1 2943.7 744.7 0 0
NSeg206-i 1102.0 438.8 14818.9 5533.8 0 0
SSeg131-i 792.9 192.9 67910.1 66901.1 18 17
SSeg178-i 785.5 186.3119002.4 117826.7 32 29

Table 3.Solvers’ performance (no grid).
Runtime [sec]

BT Matching
Matching +

Case study
Symmetry

NSeg125-c 139.2 4.8 0.03
NSeg125-i 744.7 2.5 *
NSeg206-c 4971.2 16.3 0.06
NSeg206-i 5533.8 8.5 *
SSeg131-c 38618.3 7.3 0.26
SSeg131-i 66901.1 3.1 *
SSeg178-c117279.1 22.5 0.41
SSeg178-i 117826.7 4.9 *
* Did not finish in 1 hour.

Effect of query reformulation.As stated in Section 5.5, the sheer number of solutions
made it impossible to solve problem instances with incomplete phone-books using the
query of enumerating all solutions. Thus, without the queryreformulation, we would
not have been able to solve the incomplete phone-book instances.

Effect of finding symmetrical maximum matchings.In the absence of grid constraints,
the BID can be solved in polynomial time by the matching solver. Here we compare
backtrack search, a solver that uses Algorithm 1 with a matching solver, and a solver
that uses the reformulation of symmetric matchings from section 4.3. Finding all sym-
metric matchings requires enumerating all matchings, which isn’t feasible for the under-
constrained incomplete phone-book problems. Thus, those problem instances timed out
and are indicated by asterisks. However, when the number of solutions was small, such
as when the phone-book is complete, the symmetry solver had significantly better per-
formance than the per-variable matching solver. The benefitin terms of runtime reduc-
tion is shown in Table 3.

Effect of relaxing a CSP into a matching problem.To test the use of the matching re-
laxation as a preprocessing step and lookahead mechanism, we added grid constraints
to each region. Table 4 shows the results of these experiments, comparing the perfor-
mance of: (1) the backtrack search (BT), (2) BT with matchingfor preprocessing (Pre-
proc+BT), (3) BT with matching for lookahead (Lkhd+BT), and(4) BT with matching

14

for both purposes (Preproc+BT+Lkhd). We report runtime, number of timeouts, and
number of calls to the CSP solver saved by the preprocessing.In all cases, the same so-
lutions were found. Our results indicate that, in general, the integration of the matching
and BT improves performance. There are exceptions, when thecost of the additional
processing exceeds the gains in terms of reduced search space. However, even when we
saw performance degradation, the degradation was minimal.

Table 4. Improvements due to preprocessing and lookahead.

NSeg125-c + grid CPU [sec] #Timeouts Calls saved
BT 100.8 0 -

Preprocessing+BT 33.2 0 97.0%
BT+Lkhd 140.2 0 -

Preproc+BT+Lkhd 39.6 0 97.0%
NSeg125-i + grid CPU [sec] #Timeouts Calls saved

BT 1232.5 0 -
Preprocessing+BT 1159.1 0 62.6%

BT+Lkhd 726.6 0 -
Preproc+BT+Lkhd 701.1 0 62.6%

NSeg206-c + grid CPU [sec] #Timeouts Calls saved
BT 2277.5 0 -

Preprocessing+BT 614.2 0 98.9%
BT+Lkhd 1559.2 0 -

Preproc+BT+Lkhd 443.8 0 98.9%
NSeg206-i + grid CPU [sec] #Timeouts Calls saved

BT 4052.8 0 -
Preprocessing+BT 3806.7 0 87.8%

BT+Lkhd 3499.5 0 -
Preproc+BT+Lkhd 3510.0 0 87.8%

SSeg131-c + gridCPU [sec] #Timeouts Calls saved
BT 17063.3 0 -

Preprocessing+BT 5997.9 0 92.5%
BT+Lkhd 9745.8 0 -

Preproc+BT+Lkhd 4256.0 0 92.5%
SSeg131-i + grid CPU [sec] #Timeouts Calls saved

BT 114405.9 30 -
Preprocessing+BT 114141.3 29 74.2%

BT+Lkhd 107896.3 30 -
Preproc+BT+Lkhd 108646.5 30 74.2%

SSeg178-c + gridCPU [sec] #Timeouts Calls saved
BT 78528.6 14 -

Preprocessing+BT 15717.9 1 91.9%
BT+Lkhd 74172.0 14 -

Preproc+BT+Lkhd 13961.1 1 91.9%
SSeg178-i + grid CPU [sec] #Timeouts Calls saved

BT 138404.2 35 -
Preprocessing+BT 103244.7 25 72.7%

BT+Lkhd 121492.4 32 -
Preproc+BT+Lkhd 85185.9 22 72.7%

7 Related work

Reformulation has been applied to a wide range of CSP problems with much success.
The literature encompasses also approaches to modeling, abstraction, approximation,
and symmetry detection. Nadel studied 8 different models ofthe n-Queens problem,
some of which much easier to solve than others[17]. Glaisher proposed avoiding sym-
metry in the Eight Queens as far back as 1874[18]. This topic has recently received
increased attention, for example in the work of Puget[19] and Ellman[9]. Holte and
Choueiry provide a general discussion on abstraction and reformulation in AI including
CSPs[20]. Razgon et al.[21] introduced a class of problems they called Two Fami-
lies of Sets constraints (TFOS), and a technique for reformulating TFOS problems into
network flow problems. Conceptually, the relaxed problem westudy in Section 4 con-
stitutes a special case of the TFOS problem.

8 Conclusions and future work

We introduced four general reformulation techniques for CSP, and integrated them in
a a comprehensive framework for solving the BID while highlighting their usefulness
for general CSPs. For example, our query reformulation facilitates a much wider use
of relational consistency algorithms than was possible before. In the future, we intend

15

to evaluate these techniques in other application settings. For example, we believe that
many resource allocation problems have matching relaxations like we described.

Acknowledgments.Experiments were conducted on the Research Computing Facility at UNL.
This research is supported by NSF CAREER Award #0133568 and the Air Force Office of Sci-
entific Research under grant numbers FA9550-04-1-0105 and FA9550-07-1-0416. The views and
conclusions contained herein are those of the authors and should not be interpreted as necessarily
representing the official policies or endorsements, eitherexpressed or implied, of any of the above
organizations or any person connected with them.

References

1. Michalowski, M., Knoblock, C.: A Constraint Satisfaction Approach to Geospatial Reason-
ing. In: Proc. of AAAI 2005. (2005) 423–429

2. Choueiry, B.Y., Iwasaki, Y., McIlraith, S.: Towards a Practical Theory of Reformulation for
Reasoning About Physical Systems. Artificial Intelligence162 (1–2)(2005) 145–204

3. Giunchiglia, F., Walsh, T.: A Theory of Abstraction. Artificial Intelligence57(2-3) (1992)
323–389

4. Dechter, R., van Beek, P.: Local and global relational consistency. Journal of Theoretical
Computer Science (1996)

5. Dechter, R.: Constraint Processing. Morgan Kaufmann (2003)
6. Russell, S., Norvig, P.: Informed Search and Exploration, page 107. In: Artificial Intelli-

gence: A Modern Approach. Prentice Hall (2003)
7. Selman, B., Kautz, H.: Knowledge Compilation and Theory Approximation. Journal of the

ACM 43(2) (1996) 193–224
8. Milano, M., ed.: Constraint and Integer Programming: Toward a Unified Methodology.

Kluwer (2004)
9. Ellman, T.: Abstraction via Approximate Symmetry. In: IJCAI 93. (1993) 916–921

10. Régin, J.: A filtering algorithm for constraints of difference in csps. In: AAAI 1994. (1994)
362–367

11. Uno, T.: Algorithms for Enumerating All Perfect, Maximum and Maximal Matchings in
Bipartite Graphs. In: Int. Symp. on Algorithms and Comput. (ISAAC ’97). (1997) 92–101

12. Berge, C.: Graphs and Hypergraphs. American Elsevier (1973)
13. West, D.: Introduction to Graph Theory. 2nd edn. Prentice Hall (2001)
14. Hopcroft, J., Karp, R.: Ann5/2 Algorithm for Maximum Matchings in Bipartite Graphs.

SIAM 2 (1973) 225–231
15. Bessière, C., Meseguer, P., Freuder, E., Larrosa, J.: On Forward Checking for Non-binary

Constraint Satisfaction. In: CP 99. (1999) 88–102
16. Prosser, P.: MAC-CBJ: Maintaining Arc Consistency withConflict-Directed Backjumping.

Technical Report 95/177, Univ. of Strathclyde (1995)
17. Nadel, B.: Representation Selection for Constraint Satisfaction: A Case Study Using n-

Queens. IEEE Expert5(3) (1990) 16–24
18. Glaisher, J.: On the Problem of the Eight Queens. Philosophical Magazine4(48) (1874)

457–467
19. Puget, J.: On the satisfiability of symmetrical constraint satisfaction problems. In: ISMIS93.

(1993) 350–361
20. Holte, R.C., Choueiry, B.Y.: Abstraction and Reformulation in Artificial Intelligence. Philo-

sophical Trans. of the Royal Society Sec. Biological Sciences358(1435) (2003) 1197–1204
21. Razgon, I., O’Sullivan, B., Provan, G.: Generalizing Global Constraints Based on Network

Flows. In: Workshop on Constraint Modelling and Reformulation. (2006) 74–87

