Reformulating Constraint Satisfaction Problems to
Improve Scalability

Kenneth M. Bayef, Martin Michalowsk?, Berthe Y. Choueiry?, Craig A. Knoblock

1 Constraint Systems Laboratory, University of Nebraskaebin
{kbayer,choueiry@cse.unl.edu
2 University of Southern California, Information Sciencestitute
{martinm,knoblock@isi.edu

Abstract. Constraint Programming is a powerful approach for modekmngl
solving many combinatorial problems, scalability, howevemains an issue in
practice. Abstraction and reformulation techniques atero§ought to overcome
the complexity barrier. In this paper we introduce four refalation techniques
that operate on the various components of a Constraintf&etitsn Problem
(CSP) in order to reduce the cost of problem solving and ifatél scalability.
Our reformulations modify one or more component of the CS®,(the query,
variables domains, constraints) and detect symmetridatisns to avoid gener-
ating them. We describe each of these reformulations ingh&egt of CSPs, then
evaluate their performance and effects in on the buildirgidication problem
introduced by Michalowski and Knoblodi].

1 Introduction

Choueiry et al[2] proposed to characterize a reformulation as a transfoomatf a
problem”P from one encoding to another, where a problem is given Byrieaulation
and aquery, P = (F, Q). The transformation may change the query and/or any of the
components of the formulation. The goal of the transfororai$ to ‘simplify’ problem
solving, where the benefit of the ‘simplification’ and oth#eets of the transformation
are clearly articulated in the particular problem-solvaantext.

In this paper, we propose four reformulation technique$ tperate on various
aspects of a Constraint Satisfaction Problem (CSP) in doderprove the performance
of problem solving. The problem formulation of a CSP is gibgi?x = (V, D, C) where
V= {V;} is a set of variablesD= {Dy; } the set of their respective domains, aha
set of constraints. A constraint is a relation over a subséte variables specifying
the allowable combinations of values for the variables snsitope. A solution is an
assignment to the variables such that all constraints aisfied. The query is usually
to find one satisfying solution, in which case the problenmisP-complete in general.
Alternatively, the query could be to find all possible satus.

In this paper, we describe a reformulation of a CSP as a wamsition of the orig-
inal problemP, = (F,, Q,) into the reformulated proble®, = (F,, Q,), where
F; indicates a formulation an@; indicates a query, as illustrated in Figure 1. While
our reformulations apply to a variety of resource allocatfroblems, in this paper
we describe their application to the building identificatiproblem (BID) proposed
by Michalowski and Knoblock1]. The task is to assign a list of postal addresses to

Py 5

Formulation: %,=(%/,,1,,c,) | Reformulation (Formulation: % =(%,,2,C;)
Query:Q o Query:Q

Fig. 1. The general pattern of a CSP transformation.

buildings appearing in a satellite image. A map providesrthees of the streets and
the positions of the buildings, but we do not know the addresd the buildings or,
for a building located on a street corner, on which streethhiéding’s address lies.
The original work established the feasibility of modelingdasolving this problem as
a CSP. However, their work did not scale well to larger praid¢l1]. We show that
the reformulations we introduce allow us to solve largeigpems. The largest problem
solved by Michalowski and Knoblock included 34 buildingsthis paper, we scale up
to problems involving 206 buildings.

This paper is structured as follows. In Section 2 we intredacew type of global
constraint and describe how to use symbolic values to raftate the domains of vari-
ables in the scope of this constraint. In Section 3 we preseatormulated query that
reduces runtime in practice. In Section 4 we describe hoaxnet) an assignment prob-
lem into a matching problem can be used to improve the pedaoa of backtrack
search used to solve the assignment problem. We also descepmmetry detection
process for generating all solutions to a maximum matchirgbipartite graph from a
single solution to the matching. In Section 5 we apply thesartiques to the building
identification problem (BID). We present experimental testhat demonstrate their ef-
fectiveness in Section 6. Section 7 discusses relatednedation work and Section 8
contains our conclusions and future research directions.

2 Domain reformulation using symbolic values

We propose ALDIFF-ATMOST as a global constraint useful for resource allocation
problems. In this section we first describe this constraive.then discuss how to re-
formulate the domains of the variables in the scope of thistraint in order to reduce
their size both for general and totally ordered domainstiSe&.2 illustrates the use of
this constraint and its reformulation in a practical resguallocation problem.

2.1 ALLDIFF-ATMOST

Example 1. An emerging country received an aid to build 7 talspon its territory,
but does not want to put more than 2 hospitals in areas with kigcanic activity.

We propose the constrainttADIFF-ATMOST to model this situation. Given a set of
variables4 = {V1, Va, ..., V,, } with domainsDy;, ALLDIFF-ATMOST(A, k, d), where
dCDy,, keN, andk<|d|, requires that (1) all variables be different and (2) at niost
variables in4 have values frord. Note that while the domainSy, may be differentd
must be a subset of each one of them @ng, andd and Dy, may be finite or infinite.

Example 2. Consider with the variable&= {11, V», V3, V,} of a CSP, withD;={1,
2, ..., 8 and the constrainALL DIFF-ATMOST(A, 2,{1, 3,4, 5,8}). The assignment
V15, Vo2, V37,V 4, andV5+3 satisfies the constraint.

2.2 ALLDIFF-ATMOST reformulation

Our first reformulation technique applies to the lADIFF-ATMOST and the domains
of the variables in its scope. The transformation, which weatibe next, is theorem
constant, in the sense that solutions to the reformulatedi@m map to solutions to
the original probleni3]. The benefit of this reformulation is the reduction of the do-
main sizes. Because the complexity of many CP techniquesndison the sizes of the
domains, the reformulation improves the solver perforneanc

We reformulate the domains of the variables in the scopesoddimstraint AL DIFF-
ATMOST(A, k, d) by introducingk valuess, that we callsymbolic valuess follows:

VViEADVir:{81,82,...,Sk}U(DVi\d) (1)

where the symbolic values (1 < j < k) can take any distinct values ihh Applying
this reformulation on Example 2 yields the following dongiior all four variables:
Dy, ={s1, s2, 2, 6, 7}, wheresy, s can take any different values i, 3, 4, 5, §. In
Example 1, the domains becorfi&, s} U {sites in non-volcanic arehsvheresy, sz
are different and range over sites with volcanic activities

This reformulation procedure operates on the problem féatian and affects both
the ALL DIFF-ATMOST constraints and the domains of the variables in their scape,
Figure 2. However the most significant modification is the demreformulation. We
transformD,, to D,, where inD, the domains of variables i@l are reformulated ac-
cording to Equation (1). Replacingin the original domains wittk symbolic values
reduces their sizes by| — k, which is useful wher is large or infinite.

i
i o Formulation%,
(Formulatlon 'Z,:(’VUQ)UCOD 7 : Smaller domains with symbolic valu
C,: Replace AlIDiff-Atmost with AlIDiff

Fig. 2. The reformulation of AL DIFF-ATMOST.

This operation is particularly useful during backtrackrebavhere the domain val-
ues are enumerated. If we want to assign ‘ground’ values¢h sgmbolic value, we
can do so as a post-processing step while ensuring that twbalic values are always
mapped back to distinct ground values. While a solution eoréformulated problem
does not map to a unique solution to the original problem, avegenerate any solution
to the original problem from some solution to the reformethproblem.

Of particular concern is the interaction between this nefiolation and the other
constraints in the problem. When all the constraints in df@m can be checked on
the symbolic values, as in the case of the BID, the refornaras sound. When one or
more constraints in a problem must be checked on the ‘grouaidés, then propagation
must run on the appropriate representation for each cansttad, as soon as domain
filtering causegd| < k, then reformulated domains should be dropped andNFF-
ATMOST replaced with a AL DIFF constraint.

2.3 Symbolic intervals

When the values in the variables domains follow a total gragin numeric domains,
the domains are commonly represented as intervals andraorigiropagation is typ-

ically restricted to the endpoints of these intervals, abdar-consistency algorithms.
The reformulation of an ALDIFF-ATMOST in the presence of totally ordered domains
obviously remains valid. However, in order testrict propagation to the endpoints of
the intervalsrepresenting the domains, the following is needed:

1. We require the values ihto form a convex interval.

2. We must add ordering constraints between two consecytise < so < ... < Sg.

3. We must add total ordering constraints between the twamd symbolic values,
s1 andsg, and their closest neighbors in the reformulated domairéchvis ac-
complished as follows. LeD%,” and Dy, be respectively the intervals @y, \d

to the left and right of, and adjacent t, The right endpoint oD{/” must be less
thans;, and the left endpoint aby, must be greater thas),. See Figure 3.

DEf =D U {88 S8} U Dl

}—H ..."?'... }—“

: | I
i N ———— !
d

Fig. 3. ALLDIFF-ATMOSTreformulation for totally ordered domains.

4. When mapping the symbolic values back to ground valuegytthund values must
respect the total ordering imposed on the symbolic values.

Section 5.2 illustrates the use of ADIFF-ATMOST and its reformulation on the BID.

3 Query Reformulation

In a CSP, the query is usually to find a single solution (satidity problem) or all solu-
tions (enumeration problem). However, in some applicatiore may not be interested
in entire solutions, but rather all the values that eachaldei takes in any solution. We
call the problem corresponding to this querper-variable solutions Thus, we re-
formulate the query fron®,, enumerating all solutions, t@,, finding a per-variable
solution. Formally, we defin®@, asvVV;, z € Dy, find if P, A (V; <« z) is satis-
fiable. Figure 4 illustrates this reformulation. This refarlation changes the problem,
because the solution returned will be different. Howevesdme cases, the per-variable
solution is an acceptable alternative. This transfornmatizanges the complexity class
of the problem from a counting problem to a satisfiability one

B B
Query: Q4 = Enumerate all solutions Query:Q, = Find a per-variable solutigr
The problem is a counting proble The problem is a satisfiability problem

Fig. 4. Query reformulation.

In this section we propose an algorithm to find per-variablat®ons, and describe
how this algorithm can be used to enforce high levels of iatat consistency.

% Formally, this query corresponds to finding the minimal CSP.

3.1 Per-variable solutions

We can find the set of possible assignments to each variataléG8P by solving the
enumeration problem, that is finding all solutions and therating through the solution
set to collect the values taken by each variable. Howevemtimber of solutions to a
CSP isO(d™), wheren is the number of variables antlis the maximum domain size.
Thus, finding all solutions may be prohibitively expensive.

We replace the query of finding all solutions (an enumeratimblem) with the
query of finding if a solution exists for every combination wHriable-value pair (a
polynomial number of satisfiability problems). Algorithmtésts for every variable-
value pair(V;, z) if the CSP withV; <z is solvable. When a solution exist,is added
to the data structure returned by the algorithm. The algoriteturns the set of variables
along with all their values that appear in a solution.

Input: P =(V,D,C)
Output: S, a per-variable solution
1 foreachV; € V do
| S[Vi] —0
end
foreachV; € vV do
foreachz € Dy, do
if P with V;«+x has a solutiorthen
| S[Vi] — SViJ U {x}
end
end
10 if |S[v]| = 0then
11 | return P has no solutions
12 end
13 end
14 return S

© 00 N O U~ WN

Algorithm 1 : Finding the per-variable solutions.

The inner loop of the algorithm run@(nd) times. Each iteration requires deter-
mining the satisfiability of a CSP. This operation appearstlgobut in cases where
the original CSP has significantly more than solutions, Algorithm 1 can perform
significantly better than enumerating all solutions to tt&PC

3.2 Relational consistency

When solving a CSP, it is often beneficial to make the consdtraatwork arc-consistent.
Enforcing arc-consistency filters values from the varialdenains that cannot exist in
any solution to the problem. We can perform even more filtebip considering higher
levels of consistency. Dechter and van Beek introduetational (i, m)-consistency
as the consistency of. non-binary constraints over every subset efriables in the
CSP[4]. Dechter5] proposed the algorithiRC'; ,,,, for computing relationafi, m)-
consistencyRC|; ,,,y works as follows. For every sét;, of m constraints in a con-
straint network, compute the join of the constraints and project the result onto each
subset of; variables. The algorithm is not practical for high valuesafbecause the

memory requirements for computing and storing a joimofonstraints rises exponen-
tially with the number of variables.

Algorithm 1 computes a minimal network, which means thatrgw&lue remain-
ing in the network appears in at least one solution. Thusrebkalting network is the
same as if we had executéd’(, ,,,). The difference between the two algorithms is that
Algorithm 1 is polynomial space, where&¢’; ,,,) is exponential space. We could gen-
eralize Algorithm 1 to consider sets of up iwariables rather than unique ones. This
extension would allow the algorithm to produce the samelteasRC'; ,,), where the
memory requirement rises with which quickly becomes impractical.

4 Constraint relaxation for problem reformulation

At the core of many resource allocation problems lies thdjem of matching between
the elements of two sets: the tasks and the resources. Imajethe problem may be
complex (and likely intractable). However, in some cases,may be able to identify
constraints that can be removed to reduce the original prolrito a matching problem
in a bipartite graph.

Removing (or adding) a constraint in a problem formulatimgield a necessary (or
sufficient) tractable approximation of the problem is a tgbireformulation strategy.
Examples abound and include: In Al, admissible heuristarsegation for A [6] and
theory approximatior7]; in mathematical programming, linear relaxation of intege
programs, Lagrangian relaxati¢8], and the cutting-plane method.

In this section we first describe the relaxation of a resoaliogation problem into a
matching problem in a bipartite graph. Then, we describlertgpies that take advantage
of this reformulation when performing search for solving &R Finally, we describe a
symmetry detection technique that allows us to generakéiseapossible matchings in
a bipartite graph from a single matching.

4.1 Matching as a relaxation

LetG = (X UY, E) be a bipartite graph with edge skt vertex se’ = X UY’, and
partitions X andY’, which are independent sets of vertices. We defingatch count
for each vertex inh € V, which we denoten(v), to be a positive (non-null) integer. A
matchingin G is a set of edge8/ C F such that/v € V there exists at most one edge
e € M incident tov. In this paper we consider a matching@hto be a set of edges
M C E suchthavv € V there exists at most.(v) edges € M incident tov. Further,
we say that a matchindy/ saturates vertexiff M has exactlyn(v) edges incident to;
and a matchingd/ saturates a sétiff M saturates all vertices ifi. Finding a matching
that saturates' can be done in polynomial time (see Section 5.5).

We propose to reformulate a resource allocation problenelaxmg it into a match-
ing problem in a bipartite graph that saturates one of thplgsawo partitions. Figure 5
illustrates this relaxation. While the original problemyrize intractable, the reformu-
lated one can be efficiently solved (i.e., in polynomial fjm&hen the reformulated
problem is not solvable, the more constrained original fawbis not solvable. How-
ever, the solvability of the reformulated problem does namgntee that of the original
problem. Our reformulation is thus a necessary approxiond].

Py %

Formulation¥ ,=(7 Dy Co) FormulationG = (V,E)
Query:Q , = Is the problem satisfiable? ~ | Query:Q , = Is there a matching saturating a partition of \

Fig. 5. Relaxation of a CSP as a matching problem.

4.2 Integrating the matching relaxation in backtrack seart

When modeling a resource allocation problem as a CSP anthgatwvith backtrack
search, we can take advantage of the relaxed problem in tye:wa

1. As apreprocessing steprior to search, and
2. As a lookahead mechanisduring search to filter out, from the domains of the
future variables, those values that cannot yield a solution

Prior to search, if we determine that the relaxed problenotssoluble, we can safely
avoid using search. Further, during search, we can adagtigeeithm of Régin[10],
which finds all edges of the bipartite graph that do not pgudite inanycovering match-
ing, to identify, in one step, all values in the domains offalure variables that do not
participate in any saturating matching. This single operaallows us to filter the do-
mains of all future variables in one step.

The reformulation into a matching problem is especiallyfuls&hen finding per-
variable solutions, because Algorithm 1 executéssatisfiability tests. We propose to
test, after line 5 in Algorithm 1, whether the relaxed praobls solvable, and proceed
to line 6 only if this test succeeds. Otherwise, we returrirte b.

4.3 Generating solutions by symmetry

The set of maximum matchings in a bipartite graph can be bty enumerating all
maximum matchings using an algorithm such as the one prodnse/no[11]. In this
section, we characterize all maximum matchings in a bifgagtiaph as symmetric to a
single base matching, and proposed to use this symmetryutoenate all solutions.
Our symmetry detection relies on two graph constructiorssdieed by Bergél2]:
alternating cyclegAltCyc) andeven alternating paths starting at a free ver(ExAltP).
An AltCyc or EVAItP in a graph relative to a matchind/ alternate between edges
in M and edges not i/ . If we take a maximum matchint/ and a AltCyc or EVAItP
P, we can produce another maximum matchiig by computing the symmetric dif-
ference ofM and P, denoted\/ AP. We use that mechanism to identify all maximum
matchings in a bipartite grap as symmetric of a single maximum matchimg Let
S be the set of all AltCyc’s and EVAItP’s relative fd. We construct another maximum
matching)/; by choosing a disjoint subsét C S and computingl/ AS;. M; is sym-
metrical toM in that it is identical taM in all edges except those &). In fact, for any
maximum matchingy/; of G, we prove that there exists &) such that\/; = M AS;
using Lemma 3.1.9 df13]. We generate by first orientingG using the construction
described by Hopcroft and Kafd4]. From the oriented graph, we enumerate the al-
ternating paths by finding all EVAItP’s, as defined by Bel§&]. We enumerate the
AltCyc’s from the strongly connected components in the rieel graph as described

by Régin[10]. Thus, to store the information necessary to enumeratdtefinating
paths and cycles, and therefore all maximum matchings, Wen@ed to store a single
base matching, the set of free vertices, and the set of $frangnected componerits

Consider the bipartite grapi = (X UY,), whereX = {x1, z2, z3, 4}, Y =
{y1, y2, ys}, andE={(z1, y1), (x2,y1), (22, 92), (3, 92), (¥3,43), (¥4, Y2), (¥4,y3)}-
Figure 6 (a) shows a maximum matchifg in G. P = x1y122 iS an alternating path
andC = z3y2x4y3x3 iS an alternating cycle. We find other maximum matchingsagisin
the symmetric difference operator. Figure 6 (b) shidwA P, Figure 6 (¢) showd/ AC,
and Figure 6 (d) shows/ A(C U P).

(Formulation: The set of all maximum matchings)n (

X X X X
@ M . @ M @ M @ Y TO /U(no's algorithm g—l
@ @ @ FormulationG = (V,E)
@ @ @ @ @ @ @ @ [Query:Q,: Enumerate all maximum malchingsﬂ\ G
%2
E T T — J
@ () ‘ ’ ' (C) ‘ (d) fThZi)STOLfm;trT)sgclyIgg\nllnecled components in the oriented lgr
. a .

(b) —The set of free vertices in the oriented graph

Fig. 6. Multiple matchings saturatingy. Fig. 7. Finding all maximum matchings.

Figure 7 illustrates the two reformulations &%, the problem of enumerating all
maximum matchings. We can reformuld® asP,1, the set of all maximum match-
ings, using Uno’s algorithm. Alternatively, we can reforiaie the problem a®,.., a
base matching and its corresponding sets of strongly caed@omponents and free
vertices. All matchings can be enumerated fréys as needed. Our construction has
the same time complexity as Uno’s, which is linear in the narmdd maximum match-
ing. However, our characterization of the solutions as sytnies is a valuable one:

1. It provides a more compact representation of the set otisols. Rather than stor-
ing all matchings, we store a single matching, a set of styoocmnnected compo-
nents, and a set of free vertices.

2. In case one is indeed seekialy) or a given number of, the solutions to BID (sim-
ilarly, to a resource allocation problem that has a maximuataming relaxation),
we can generate every symmetric to that known single magchi test if it sat-
isfies the additional constraints of the non-relaxed prohlhen it does not, the
matching is a solution to the non-relaxed problem found auittsearch. Naturally,
the number of maximum matchings can be large.

We do not currently exploit those features, but they deskmtber investigations.

5 Application to the building identification problem

We apply the four techniques presented above to the [R]DThe task is to assign a
list of addresses from a phone book to buildings appearirgysatellite image. Each
address consists of the combination of a street name and heruiamap provides the

4 An improvement suggested by a anonymous reviewer.

names of the streets and the positions of the buildings. Téue ecould come from an
online source or a satellite image. We know the street namegtee positions of the
buildings, but we do not know the addresses of the buildingfoa building located
on a street corner, on which street the building’s address A variety of data sources,
such as a phone books, gazetteers, or property recordsdprat/east a partial list of
addresses in aregion. We generically refer to the addrgssasas input as phone-book
addresses regardless of their actual source. Figure 8 sh8AM3 instance.

[] = Building S1 S2

1”1 = Corner building

Si = Street TB’i ! "B’é:
ST#L, ST#d|, g3 : i
S1#8, S2#7 -
S2#8, S3#1 'B6: |B7 B1Q
S3#2, S3#3 - - -
S3#15, S3#18

Fig. 8. An example of the BID problem.

In general, the phone book may be incomplete, listing fewdelr@sses than there
are buildings in the image, but the reverse does not hold. \Wst map every phone-
book address to a building in the image. Michalowski and Kook established the
feasibility of modeling and solving this problem as a CSPwedeer, their work did not
scale well to larger problems. We show in Section 6 that tharmeulations we propose
allow us to solve larger problems.

5.1 CSP model

Below we describe the variables and constraints in our CSéetraf the BID, which
improves on the one proposed[ii.

Our model uses three types of variablesentationvariablescornervariables, and
buildingvariables. In general, there are four Booleaientation variablesincreasing-
North, IncreasingEast, OddOnEastSide, and OddOnNor¢hSide first two areor-
deringvariables and indicate whether or not addresses increasdue when moving
toward the north and to the east. The remaining twapairity variables and indicate on
which side of the street odd addresses occur. ddreer variablesrepresent the pos-
sible streetson which a corner building might be. We generate one cornealvie for
each corner building, whose domain is the list of streets bitkvthe building could
lie, and has size 2 in most cases. The corner buildings aveatérticulations’ in the
constraint network: once the solver assigns values to atlexduildings, the constraint
network degenerates into a set of chains (correspondingitditgs along street seg-
ments) that can be solved in a backtrack-free manner. Mighsi and Knoblock too
noted this featur¢l]. Thus, the solver instantiates corner buildings as sooroasip
ble. Thebuilding variablesepresent the addresses (i.e., numbers) of the buildings. W
generate a building variable for every building on the mape @omain of a variable is
every possible address on the building’s streets.

Our model has five types of constrainparity, ordering, corner, phone bookand
grid. Parity constraintsare binary constraints and ensure that the numbers assigned

10

to buildings respect the values assigned to the parity rftateon) variables.Order-
ing constraintsare ternary constraints, and link an ordering variable to twilding
variables along the same street. These constraints efmsurné addresses assigned to
the building variables respect the ordering specified byadtikering variableCorner
constraintslink the the corner and building variables of a corner buitdand ensure
that the address assigned to the building is consistent tvéhstreet chosen for the
building. Phone-book constraintsxist for each street on the map. These constraints
ensure that the solver assigns every address in the pholkedsome building along
that street. These constraints usually have a high aritaulee their scope is the set
of buildings along the streeGrid constraintsexist between buildings across certain
artificial grid-lines, depending on the region we are matgliThese constraints ensure
that the addresses of adjacent buildings across the ged-fre in separate numeric
increments. For example, in many cities in the United Statddresses increase to the
next increment of 100 across intersections.

5.2 Symbolic values

If the phone book is incomplete, we must infer the missing bersto add to the vari-
ables’ domains. Michalowski and Knoblock proposed to emateeall numbers be-
tween 1 and the largest address that appears on the [gtfe@heir approach has two
problems. First, the choice of the upper limit is arbitrafyhen the largest address is
not in the phone book, this approach may yield incorrecttemhis. The second prob-
lem with this approach is that the size of the domains bec@rasbitively large on
real-world data. Using symbolic values in phone-book a@ist solves both problems.
Let S be a streetPs its set of phone-book addresses of a given paHtythe set of
buildings on the side of of that parity, and [min,max] the range of address numbers on
that side ofS. The address numbers i partition [min,max] into consecutive convex
intervals. In any such intervaly i»), we cannot use more thaBs|—|Ps| addresses,
which we express as 1A DIFF-ATMOST(Bg, kq, (i1, i2)) with k,=minimum(Bg|-
| Ps], L%J). We reduce the variables’ domains using the reformulatioBez-
tion 2 on each of these intervals. For example, assume we bavine even side of
S, Bs={Bi, Ba, ..., Bs}, Ps={S#12,S#18, min=2, and max=624. An assignment
cannot use more than 3 numbers in each of [2,12), ([12,18)(&8,624], yielding 3
ALLDIFF-ATMOST constraints with the following argument®§, 3, [2,12)), Bs, 2,
(12,18)), and Bg, 3, (18,624]). We replace the domain [1,624] of each vaeatith
the significantly smaller seftsy, so, s3, 12, s4, s5, 18, sg, s7, ss} wheresy, s, s3 €
[2,12),54, 55 € (12,18), andbg, s7, ss € (18,624] ands; <s; for i<, see Figure 9. This
process allows us to choose an arbitrarily large upper b@onak) on a given street.

Reformulated Domain ~ {S1 S» Sa 12,9,55.18,%, 5,5 }

Original Domain {2, 4,'8, 10, 12, 14, 16. 18, 20, 22, ..., 622, 62

Fig. 9. Domain reformulation for the BID.

11

5.3 Query reformulation

Another challenge of real-world BID instances is the largenber of solutions. If the
phone book is incomplete, the problem is under-constraiyiettling a large number
of solutions. One possible query would be to enumerate allsthiutions to collect
the acceptable list of addresses for each buildidg By reformulating the query as
proposed in Section 3, we can use Algorithm 1 to obtain theesesult at a much
cheaper cost. In summary, we replace the query: “Enumeliatelations and collect
the addresses taken by the buildings in these solutionsf thié query “Find all the
addresses that a given building can take.”

5.4 Constraint relaxation for problem reformulation

We show below that, when no grid constraints exist, the BIBbgm can be mod-
eled as a matching in a bipartite graph, and is thus tractdltle CSP approach of
Michalowski and Knoblock remains pertinent in that it alkane to represent arbitrary
street-addressing schemas used around the world, sucldamgstraints. We propose
the removal of grid constraints as a tractable relaxatiaihefBID.

Given an instance of this problem without grid constrainis,construct a bipartite
graphG = (B U S, FE) as follows. First, assume an assignment to the orientatioin v
ables (there are*uch assignments). For each buildjaign the problem, add a vertex
b to B. For each street in the problem, add two vertices g ands.,.,, to S, one for
each side of the street. For each buildiygadd an edge between verteand the street
vertex corresponding to the street side on whictmay be. (Note that corner buildings
are on two streets.) Assuming odd numbers appear on the HodiWest sides of the
street, Figure 10 shows the construction(dfor the map in Figure 8. We can show
that a matching in this graph that saturatesorresponds to a satisfactory assignment
of streets to corner buildings.

Fig. 10. Graph construction for Figure 8. Fig. 11. Satisfying matching for Figure 10.

Figure 11 shows a satisfying matching for the graph from FgLO, where the
edges included in the matching are darkened. The numbeerémiheses indicate the
match count of the vertex. This matching corresponds to sigasient of buildings to
streets. Thus, we can now construct a solution to the probkapost-processing step,
where we simply assign numbers to each building along eaehbtst

While the matching approach is powerful, it cannot modettié constraint. Whether
the problem with the grid constraints can be solved effitygeimains an open question.

12

We propose to use the matching in 2 ways: (1) directly solebdlems that have no grid
constraints, and (2) use the relaxation to detect unsdityafiioth as a preprocessing
step and for lookahead as discussed in Section 4).

5.5 Solvers

It was simply impossible to solve any of our real-world dagdssusing the original
query. We could solve them only with the reformulated quasymng Algorithm 1.

We implemented two solvers: a matching-based solver ana@melsdased solver.
The former finds a maximum matching using @fn°/?) algorithm by Hopcroft and
Karp [14] after replacing each vertex in the bipartite graph by as mamtices as its
match count. The latter uses backtrack search (BT) with nB@®k-ahead strategy for
non-binary CSP§15], and conflict-directed backjumpindé]. In BT, we implemented
a hybrid representation of the domains: enumerated valnesraervals. We use the
interval representation to propagate ordering conssdirg., less-than constraints), and
restrict this propagation to the bounds of the intervalhaitt loss of pruning power.
This representation improved our runtime by one order of mitage.

When the problem given as input has no grid constraint, wehesmatching solver
in line 6 of Algorithm 1, which computes one matching in ea€the nd loops. Thus,
the solver runs in polynomial time, which is a significant noyement compared with
the exponential-time backtrack search based solver. WHegproblem instance has grid
constraints, we proceed as follows:

1. Preprocessing: We insert a call to the matching solver éifie 5 in Algorithm 1
and proceed to line 6 if we find a matching, otherwise retudine5.

2. Backtrack search (BT): We use the search-based solvieiit]

3. Lookahead: In addition to nFC3, we filter in one step the dgios of all future
variables given the current path in the search (see Sec}ion 4
Figure 12 illustrates the behavior of the solvers.

6 Experiments

Table 1 describes the properties of the regions of the cifl & egundo (CA), on which
we ran our experiments. The number of calls refers to thénot@ber of times to line 6
of Algorithm 1. Each call to line 6 was timed out after one holle report the number
of timed out executions.

The completeness of the phone book indicates what percémé diuildings on the
map have a corresponding address in the phone book. We dtbateomplete phone
books using property-tax data, and the incomplete phon&suosing the real-world
phone-book.

Effect of domain reformulationTable 2 shows the benefit of domain reformulation
by comparing the performance when using the original domamthe reformulated
domains. The experiment uses backtrack search (BT), bt motetake into consider-
ation the grid constraints. When the phone book is compleieALL DIFF-ATMOST
constraints are present, and thus the reformulation doéénmp The advantage of the
reformulation is clear when using the incomplete phone book

13

A BID instance + vvp

[Build the maiching modé| Table 1.Case studies used in experiments.

_ Case study Phone book Number of
[Execute the matching soljer completenesgbldgs crnr bldgs blks calls
¥ NSey125-d 100.0% 4160
NSegl25-| 45.6% 125 1 4 1857
NSeg206-¢ 100.0% 4879
NSeg206-] 50.5% 206 28 7 10004
SSegI31-¢ 100.0% 3833
SSeg131-{ 60.3% 131 36 8 2ar
SSegl78-¢ 100.0% 4852
SSegl78- 65.6% 178 46 12 a7
Table 2. Effect of domain reformulation.
Case studyfAvg. domain siz§ Runtime [sec] | Timeouts
- Orig. Ref. Orig. Ref. |Orig. Ref.
Build the CSP model NSeglz511031 2361 20437 7447 0 O
— Domain reformulation NSeg206-{1102.0 438.8 148189 5533 0 O
l SSegl31- 792.9 192.9 67910.1 66901 18 17
Execute backtrack search SSeg178- 785.5 186.83119002.4 117826732 29
-MAC-CBJ B :
—Lookahead with nEC3 Table 3. Solvers perfprmance (no grid).
-Special variable ordering: instantiates Runtime [sec]
only orientation and corner variables Casestudy BT Matching Matching +
—-Domains implemented as a list of interval Symmetry
-Lookahead using matching relaxation NSeg125-¢ 139.2 4.8 0.03
NSeg125-i| 744.7 25 *
NSeg206-d4 4971.2 16.3 0.06
Is the CSP NSeg206-i| 5533.8 85 *
satisfiable? SSeg131-d 38618.3 7.3 0.26
No solution exists SSeg131-[66901.1 3.1 *
] Yes SSegl78-d117279.1 225 0.41
Solution exists SSegl78-i[117826.7 4.9 *
Fig. 12.Implementing Line 6 of Algorithm 1. * Did not finish in 1 hour.

Effect of query reformulationAs stated in Section 5.5, the sheer number of solutions
made it impossible to solve problem instances with incotegbdone-books using the
query of enumerating all solutions. Thus, without the quefgrmulation, we would
not have been able to solve the incomplete phone-book icestan

Effect of finding symmetrical maximum matchingsthe absence of grid constraints,
the BID can be solved in polynomial time by the matching soli#gere we compare
backtrack search, a solver that uses Algorithm 1 with a niagckolver, and a solver
that uses the reformulation of symmetric matchings frontisaet.3. Finding all sym-
metric matchings requires enumerating all matchings, isia’t feasible for the under-
constrained incomplete phone-book problems. Thus, thad®#gm instances timed out
and are indicated by asterisks. However, when the numberatfisns was small, such
as when the phone-book is complete, the symmetry solverigadisantly better per-
formance than the per-variable matching solver. The beinefirms of runtime reduc-
tion is shown in Table 3.

Effect of relaxing a CSP into a matching probleifo test the use of the matching re-
laxation as a preprocessing step and lookahead mechanesaded grid constraints
to each region. Table 4 shows the results of these expersmemmparing the perfor-

mance of: (1) the backtrack search (BT), (2) BT with matcHorgpreprocessing (Pre-

proc+BT), (3) BT with matching for lookahead (Lkhd+BT), aff) BT with matching

14

for both purposes (Preproc+BT+Lkhd). We report runtimember of timeouts, and
number of calls to the CSP solver saved by the preprocedsiad).cases, the same so-
lutions were found. Our results indicate that, in geneha,integration of the matching
and BT improves performance. There are exceptions, whendkeof the additional
processing exceeds the gains in terms of reduced searoh. $p@agever, even when we
saw performance degradation, the degradation was minimal.

Table 4. Improvements due to preprocessing and lookahead.

NSeg125-c + grid|CPU [sec] #Timeouts Calls save| SSeg131-c + grid CPU [sec] #Timeouts Calls saved
BT 100.8 0 - BT [17063.3 0 -
Preprocessing+BT| 33.2 0 97.0% Preprocessing+BT 5997.9 0 92.5%
BT+Lkhd 140.2 0 - BT+Lkhd 9745.8 0 -
Preproc+BT+Lkhd 39.6 0 97.0% Preproc+BT+Lkhd 4256.0 0 92.5%
NSeg125-i + grid|CPU [sec] #Timeouts Calls save] SSeg131-i + grid{CPU [sec] #Timeouts Calls saved
BT 12325 0 - BT [114405.9 30 -
Preprocessing+BT 1159.1 0 62.6% Preprocessing+BT 114141.3 29 74.2%
BT+Lkhd 726.6 0 - BT+Lkhd | 107896.3 30 -
Preproc+BT+Lkhd 701.1 0 62.6% Preproc+BT+Lkhd | 108646.5 30 74.2%
NSeg206-c + grid{CPU [sec] #Timeouts Calls save SSeg178-c + gri CPU [sec] #Timeouts Calls saved
BT 22775 0 - BT [78528.6 14 -
Preprocessing+BT 614.2 0 98.9% Preprocessing+BT 15717.9 1 91.9%
BT+Lkhd 1559.2 0 - BT+Lkhd | 74172.0 14 -
Preproc+BT+Lkhd 443.8 0 98.9% Preproc+BT+Lkhd | 13961.1 1 91.9%
NSeg206-i + grid|CPU [sec] #Timeouts Calls save] SSeg178-i + grid{CPU [sec] #Timeouts Calls saved
BT 4052.8 0 - BT [138404.2 35 -
Preprocessing+BT 3806.7 0 87.8% Preprocessing+BT 103244.7 25 72.7%
BT+Lkhd 3499.5 0 - BT+Lkhd | 121492.4 32 -
Preproc+BT+Lkhd 3510.0 0 87.8% Preproc+BT+Lkhd | 85185.9 22 72.7%

7 Related work

Reformulation has been applied to a wide range of CSP prabieith much success.
The literature encompasses also approaches to modelisgaetion, approximation,
and symmetry detection. Nadel studied 8 different modelhef.-Queens problem,
some of which much easier to solve than otH&@. Glaisher proposed avoiding sym-
metry in the Eight Queens as far back as 187g. This topic has recently received
increased attention, for example in the work of Pudeél and Ellman[9]. Holte and
Choueiry provide a general discussion on abstraction doedmeilation in Al including
CSPs[20]. Razgon et al[21] introduced a class of problems they called Two Fami-
lies of Sets constraints (TFOS), and a technique for reftatmmg TFOS problems into
network flow problems. Conceptually, the relaxed problemstugly in Section 4 con-
stitutes a special case of the TFOS problem.

8 Conclusions and future work

We introduced four general reformulation techniques foPC&hd integrated them in
a a comprehensive framework for solving the BID while highting their usefulness
for general CSPs. For example, our query reformulationifatés a much wider use
of relational consistency algorithms than was possibletgefin the future, we intend

15

to evaluate these techniques in other application settlrgrsexample, we believe that
many resource allocation problems have matching relanalike we described.

Acknowledgments.Experiments were conducted on the Research ComputingtiatiUNL.
This research is supported by NSF CAREER Award #0133568 lamd\itr Force Office of Sci-
entific Research under grant numbers FA9550-04-1-0105 AB8%0-07-1-0416. The views and
conclusions contained herein are those of the authors anddshot be interpreted as necessarily
representing the official policies or endorsements, eglpressed or implied, of any of the above
organizations or any person connected with them.

References

1. Michalowski, M., Knoblock, C.: A Constraint Satisfaatidpproach to Geospatial Reason-
ing. In: Proc. of AAAI 2005. (2005) 423—-429
2. Choueiry, B.Y., lwasaki, Y., Mcllraith, S.: Towards a Btiaal Theory of Reformulation for
Reasoning About Physical Systems. Artificial Intelligedé (1-2)(2005) 145-204
3. Giunchiglia, F., Walsh, T.: A Theory of Abstraction. Aftial Intelligence57(2-3) (1992)
323-389
4. Dechter, R., van Beek, P.: Local and global relationakisiancy. Journal of Theoretical
Computer Science (1996)
5. Dechter, R.: Constraint Processing. Morgan KaufmanA3p0
6. Russell, S., Norvig, P.: Informed Search and Exploratgage 107. In: Artificial Intelli-
gence: A Modern Approach. Prentice Hall (2003)
7. Selman, B., Kautz, H.: Knowledge Compilation and Theopp#ximation. Journal of the
ACM 43(2) (1996) 193-224
8. Milano, M., ed.: Constraint and Integer Programming: amva Unified Methodology.
Kluwer (2004)
9. Ellman, T.: Abstraction via Approximate Symmetry. InClal 93. (1993) 916-921
10. Reégin, J.: A filtering algorithm for constraints of difence in csps. In: AAAI 1994. (1994)
362-367
11. Uno, T.: Algorithms for Enumerating All Perfect, Maximuand Maximal Matchings in
Bipartite Graphs. In: Int. Symp. on Algorithms and CompisAAC '97). (1997) 92-101
12. Berge, C.: Graphs and Hypergraphs. American Elsev8t3)L
13. West, D.: Introduction to Graph Theory. 2nd edn. Prenitall (2001)
14. Hopcroft, J., Karp, R.: Am®/? Algorithm for Maximum Matchings in Bipartite Graphs.
SIAM 2 (1973) 225-231
15. Bessiere, C., Meseguer, P., Freuder, E., Larrosa, d.Fddward Checking for Non-binary
Constraint Satisfaction. In: CP 99. (1999) 88—102
16. Prosser, P.: MAC-CBJ: Maintaining Arc Consistency vitnflict-Directed Backjumping.
Technical Report 95/177, Univ. of Strathclyde (1995)
17. Nadel, B.: Representation Selection for Constrainisg@ation: A Case Study Using n-
Queens. |IEEE ExpeB(3) (1990) 1624
18. Glaisher, J.: On the Problem of the Eight Queens. Ptphlisal Magazine4(48) (1874)
457-467
19. Puget, J.: On the satisfiability of symmetrical constraatisfaction problems. In: ISMIS93.
(1993) 350-361
20. Holte, R.C., Choueiry, B.Y.: Abstraction and Reforntiga in Artificial Intelligence. Philo-
sophical Trans. of the Royal Society Sec. Biological Sasi3681435) (2003) 1197-1204
21. Razgon, I., O'Sullivan, B., Provan, G.: Generalizingkal Constraints Based on Network
Flows. In: Workshop on Constraint Modelling and Reformiaat (2006) 74-87

