Reformulating CSPs for Scalability with Application to
Geospatial Reasoning

Kenneth M. Bayet, Martin Michalowsk?, Berthe Y. Choueir?, Craig A. Knoblock

1 Constraint Systems Laboratory, University of Nebraskaehin
{kbayer,choueiry@cse.unl.edu
2 University of Southern California, Information Sciencestitute
{martinm,knoblock@isi.edu

Abstract. While many real-world combinatorial problems can be adzgebusly
modeled and solved using Constraint Programming, scalat®imains a major
issue in practice. Constraint models that accurately refitecinherent structure
of a problem, solvers that exploit the properties of thisigire, and reformu-
lation techniques that modify the problem encoding to redie cost of prob-
lem solving are typically used to overcome the complexityriba In this pa-
per, we investigate such approaches in a geospatial reastask, the building-
identification problem (BID), introduced and modeled as agi@int Satisfac-
tion Problem by Michalowski and Knoblodk]. We introduce an improved con-
straint model, a custom solver for this problem, and a nurobeeformulation
techniques that modify various aspects of the problem éngdd improve scal-
ability. We show how interleaving these reformulationshitie various stages of
the solver allows us to solve much larger BID problems thas praviously pos-
sible. Importantly, we describe the usefulness of our refdations techniques
for general Constraint Satisfaction Problems, beyond fied®plication.

1 Introduction

Geospatial data integration aims at combining geospatiafination from traditional
and non-traditional data sources to infer information featot available in any one
source. The inadvertent bombing of the Chinese Embassylgrd&ie[2] illustrates the
importance of geospatial data integration. That eventcchalre been avoided by rea-
soning about the information that was available at the tinee, telephone books and
maps) to identify the buildings shown in a satellite imager#igenerally, the informa-
tion gained by data integration can be used to verify and amngeospatial databases
(e.g., gazetteers), and extend the capabilities of gelaspgstems (e.g., Google Maps,
Google Earth, and Microsoft VirtualEarth).

Michalowski and KnoblocK1] identified and studied the Building Identification
(BID) problem as an application of significant intelligenaed civilian impact. The
task is to assign a potentially incomplete list of postalraddes, collected from vari-
ous ‘phone-book’ sources, to buildings appearing in a atéhage. A map provides
the names of the streets and the positions of the buildingsye do not know the ad-
dresses of the buildings or, for a building located on a sttemer, on which street the
building’s address lies. They modeled the problem as a @ainsBatisfaction Problem
(CSP) and used an existing solver (CAIa] to findall possiblematchings of addresses

to buildings that are consistent with the phone book and thighgeographical layout
in the image. Their work established the feasibility of tig@ach anddentified an
important new area where CP techniques are useful for sglwéal-world problems
However, their approach resisted scaling because theiehmecluded high-arity con-
straints and their generic solver failed to take advantégfesostructural information in
the application domain. While we show in this paper that thgigular BID problem
studied in[1] is tractable, it is clear that only a careful theoreticatigtaan determine
whether or not a given set of constraints in the BID probleelds a tractable problem.
The value of a CP approach is its flexibility in solving new lplems with arbitrary
constraints even when the problem’s tractability is unknowhis paper addresses the
scalability of the CP approach to the BID problem with the abeeformulation tech-
nigues, and discusses the use of the proposed reformatigeneral CSPs.

First, we propose an improved constraint model that reflects thelagy of the
streets layout, and accommodates the addition of new @ntstrlocally to express
variations of street-numbering schemas around the wBddongdwe introduce a cus-
tom solver, based on backtrack search, that exploits siraigbroperties of a problem
instance, such as identifying backdoor variatfdlsand exploiting them to decom-
pose the problem into tractable componeritsird, we introduce four reformulation
techniques to reduce the cost of problem solving. Thesenigabs are (1) reformu-
lating the BID problem from a counting problem to a satisfibione, (2) reducing
the domains size of variables in the scope of a global canstizat we identify and
characterize, (3) relaxing the satisfiability problem iatmatching problem, (4) using
symmetry to generate efficiently all possible solutionsefrielaxed version of the orig-
inal BID counting problemFourth, as we introduce each reformulation technique, we
also discuss its application to general CIRgh, we evaluate the benefits of 3 of our
reformulations on the BID problem, showing that we can nolwesimstances involving
206 buildings while the problem solved by Michalowski andoitock included only
34 buildings.

This paper is structured as follows. Section 2 positionsanlapted perspective on
reformulation. Section 3 describes the new CSP model androusolver for the BID
problem. Sections 4, 5, 6, and 7 describe our reformulatidérise BID problem and
their utility for general CSPs. Section 8 evaluates our népes on real-world BID
instances. Finally, Section 9 describes related work andlades the paper.

2 Background

Choueiry et al[5] characterized a reformulation as a transformation of alprolP
from one encoding to another, where a problem is given foyraulationand aquery;

P = (F, Q). The transformation may change the query and/or any of tinepoe
nents of the formulation. The goal of the reformulation issionplify’ problem solv-
ing, where the benefit of the ‘simplification’ and other effeof the reformulation are
clearly articulated in the particular problem-solving t®xi. The reformulation tech-
niques discussed in this paper operate on various aspeat€ofstraint Satisfaction
Problem (CSP) in order to improve the performance of proldeiing. The problem
formulation of a CSP is given bf = (V, D,C) whereV= {V;} is a set of variables,
D= { Dy, } the set of their respective domains, a@hd set of constraints. A constraint is

arelation over a subset of the variables specifying thevallile combinations of values

for the variables in its scope. A solution is an assignmeirtiéovariables such that all

constraints are satisfied. The query is usually to find onsistent solution or all pos-

sible solutions. In this paper, we describe a reformulatiom CSP as a transformation

of the original problen?, = (F,, Q,) into the reformulated probler®, = (F;, O,),

whereZ; indicates a formulation an@; indicates a query, as illustrated in Figure 1.
7, a3

Formulation: %=(+/,0,,c,) | Reformulation (Formulation: % =(v;,D;.C;)
Query:Q ¢ Query:Q;

Fig. 1. The general pattern of a CSP transformation.

3 Modeling and solving the BID problem as a CSP

The task is to assign possible addresses to the buildingappaar in a satellite image.
Each address consists of the combination of a street nama mmahber. The names of
the streets are provided by a map and the positions of thdibgd are extracted from
a satellite image. Thus, we know the street names and th&égussof the buildings,
but we do not know the addresses of the buildings or, for lmglsllocated on corners,
on which street the buildings are located. The addresselsecpatrtially retrieved from
a variety of data sources such as a phone books, gazettegmaperty records. We
generically refer to the addresses given as input as phoak-dddresses regardless of
their actual source. Figure 2 shows a BID instance with 1@imgs. The set of phone-

S S2

81 B3

S3
o 86! [B7] B1d
ngglrl:g:gbunding o .

Si = Street
Fig. 2. An example of the building-identification problem.

book addresses may beeompletethat is, there could be fewer addresses than there are
buildings in an image. However, we assume that the revesemat hold, that is, every
phone-book address must be assigned to a building on theeimdagplver must infer
addresses for buildings that do not have an address in theedamk. In addition to the
phone-book addresses, we may have information about-stueathering schemas used

in a given region in the world, such as the 100-block increnrethe addresses across
street intersections used in the US or the red-black numbersed in Italy. Also, we
may know the exact address of one or mizredmarks such as the residence of the
Prime Minister in London.

3.1 A new constraint model

Below we describe the variables and constraints in our CSéiehud the BID problem.
Our model uses three types of variablesentation corner, andbuilding. In general,
there are fouprientation variablesThese Boolean variables determine the global ori-
entation properties of the map. The first two aréeringvariables and indicate whether

or not addresses increase in value when moving toward ttte aod to the east. The
remaining two areparity variables and indicate on which side of the street odd ad-
dresses occur. Theorner variablesrepresent the possibireetson which a corner
building might be. We generate one corner variable for eacher building, whose
domain is the list of streets on which the building could Tibe corner buildings are
natural ‘backdoors{4] in the constraint networkonce the solver assigns values to all
corner buildings, the network degenerates into a set ohshaorresponding to build-
ings along street segments) that can be solved in a backireeknanner. Thus our
solver instantiates corner variables as soon as possib&bdilding variables repre-
sent the addresses (i.e., numbers) of the buildings. Wergens building variable for
every building on the map. The domain of a variable is evergsjide address on the
building’s streets.

Our model has five types of constrainpsrity, ordering, corner, phone bookand
grid. Parity constraintsare binary constraints and ensure that the numbers asdigned
buildings respect the values assigned to the parity (atemt) variablesOrdering con-
straintsare ternary constraints, and link an ordering variable t wilding variables
along the same street. These constraints ensure that thessads assigned to the build-
ing variables respect the ordering specified by the ordesdmnigble.Corner constraints
are binary constraints that apply to the pair of variablesaah corner building, namely,
the corner variable (which determines the street), and tiidibg variable (which de-
termines the address on the street). It reinforces thattiesas assigned to the building
is consistent with the street chosen for the buildiRgone-book constrainsxist for
each street on the map. These constraints ensure that thee aekigns every address
in the phone book to some building along that street. Thesstints usually have a
high arity, because their scope is the set of buildings atbagstreetGrid constraints
exist between buildings across certain artificial griceindepending on the region we
are modeling. These constraints ensure that the addrefsadgmoent buildings across
the grid-lines are in separate numeric increments. For plgrin many cities in the
United States, addresses increase to the next increme@0aictoss intersections.

Our new model improves the original one proposeflinas follows. The number
of variables for non-corner buildings is reduced by halfluging number of variables
between 37% and 43% in our test cases. Domains of the buildinables in[1] were
enumerated and upper bounds chosen arbitrary. They arssyied as intervals with
potentially infinite bounds in the new model. We reduced traiirgt arity from four to
two for parity constraints, and from six to three for ordgrconstraints. Corner con-
straints are new and allow early decomposition of the prablérid constraints are
also new and allow a more precise modeling of the real wonlgtréstingly, we show,
in Section 6, that in the absence of grid constraints, the @idblem is tractable. The
tractability of the BID problem in the presence of grid coastts remains an open ques-
tion. Thus, modeling the BID problem as a CSP remains a matiapproach because
it gives us the flexibility to represent arbitrary consttaisuch as grid constraints and
other street-addressing schemas used around the world.

3.2 A custom backtrack-search solver
Our custom solver, written in Java, is a backtrack-searclkqiture. We adapted the
conflict-directed backjumping mechanism MAC-CBJ@lfto handle constraints of any

arity with nFC3, a look-ahead strategy for non-binary CERsyielding nFC3-CBJ.
Key to the solver’s success are the domain representatidrirenvariable ordering.
Domains of building variables are represented as a listtefwals, where an interval
is a sequence of values. This representation allows us tdctgsropagation to the
boundaries of the intervals, as in bound consistency, wepessible, and iterate over
the individual values only when necessary. Using interwatls arbitrary large bounds is
crucial when the phone book is incomplete and the smallesirgest address number
on a given street is not known. Variables are ordered aswsllduilding and corner
variables corresponding to landmark buildings, orientatiariables, corner variables,
then building variables. Because corner variables aredmsokvariablessatisfiability
can be determined without instantiating the building vates which are instantiated
only when full solutions are sought. Further, instantigtime backdoor variables (corner
variables) decomposes the problem into chains, one foretate street.

4 Query reformulation

Michalowski and KnoblocK1] searched for all solutions in order to retrieve for each
building on the map the set of acceptable addres®&gn the phone book is complete
the problem has few solutions. Our solver, but not the ordélincan easily find all so-
lutions forall real-world examples we testeéd/hen the phone book is not comp|ete
number of solutions quickly increases. The sheer numbeglofiens to be enumerated
forced us to reconsider the task and reformulate the ofigimery as explained below.

4.1 Per-variable solutions

Finding all solutions of a CSP i9(d™) wheren is the number of variables anlds the
maximum domain size. In practice, this process is prokibliyiexpensive. We consider
the situation where we do not need to find all solutions, bly tre values that each
variable takes in any solution. We call this problénding the per-variable solutiods
Thus, we reformulate the query fro@,= enumerating all solutions, §@,= finding the
per-variable solutions, whei, is “V V;, x € Dy, find if P, A (V; < x) is satisfiable”
as illustrated in Figure 3. This query changes the complekitss of the problem from
a counting problem to a satisfiability one.

) B
Query:Q , = Enumerate all solutions Query:Q, = Find a per—-variable solutigr
The problem is a counting proble The problem is a satisfiability problem

Fig. 3. Reformulation for the per-variable solution query.

Algorithm 1 tests for every variable-value pgf;, x) if the CSP withV; <z is solv-
able. When itisy is added to the data structure returned by the algorithnoritlym 1
returns the set of variables along with all their values #pgtear in a solution.

The inner loop of the algorithm run3(nd) times. Each iteration requires deter-
mining the satisfiability of a CSP. This operation appearstlgobut in cases where
the original CSP has significantly more thand solutions, Algorithm 1 can perform
significantly better than enumerating all solutions to tt&PC

% Formally, this query corresponds to finding the minimal ASiB.also equivalent to the inverse
consistency property introduced[i8], and to relational (1¢|)-consistency defined if9].

Input: P =(V, D, ()
Output: S, a per-variable solution
1 foreachV; € V do
| S[Vi] <0

end
foreachV; € V do
foreachz € Dy, do

if P with V;«—z has a solutiorthen

| S[Vi] — SViJ U {x}

end
end
10 if |S[v]| = 0then
11 | return P has no solutions]]
12 | end Algorithm 1 : Finding the per-variable solutions.

© 00 N O U1~ WN

13 end
14 return S

When the test in Line 6 is executed by finding a solution to tB&CGhe values for
the variables in the solution found can be collected, anduerd from future calls in
the loops on Lines 1 and 5 thus reducing the number of fhdpshe BID problem, we
are not able to exploit this improvement for the followingsen. A variable-value pair
in Algorithm 1 for the BID problem is a combination of a buildj and a street name
and number. However, the satisfiability of the BID instarscddtermined, and search is
terminated, after the assignment of the backdoor variabvidsithout instantiating the
building variables (see Section 3.2). The benefit of comigsearch and generating
solutions after the instantiation of the backdoor varialieorder to exploit the above
improvement remains to be assessed.

4.2 Application to relational (¢, m)-consistency

In non-binary CSPs, in order to enforce higher level comsisy than (generalized)
arc-consistency, Dechter and van Bd6kntroducedrelational (i, m)-consistencyas
the consistency ofn non-binary constraints over every subsetiofariables in the
CSP. Dechtef10] proposed the algorithnkC; ,,,y for computing relational(i, m)-
consistencyRC|; ,,,y works as follows. For every sét,, of m constraints in a con-
straint network, join then constraints and project the result on each subseétvafi-
ables. The algorithm is not practical for large valuesmgfbecause the memory re-
quirements for computing and storing a joinrefconstraints rises exponentially with
the number of variables in the scopes of these constraints.

Algorithm 1 computes a minimal network, and the resultingueek is the same
as if we had executeBC |, ,,,y. The difference between the two algorithms is that Al-
gorithm 1 is polynomial space, whereBs'(; ,,,) is exponential space. We can easily
generalize Algorithm 1 to consider setsiofariables (and all tuples in the Cartesian
product of their domain) rather than a single variable (asthgle variable-value pair).
This extension would allow Algorithm 1 to produce the samsulis asRC; ,,. The
memory requirement rises exponentially withwhich quickly becomes impractical,
but remains more efficient thaRC'; ,,,, whose space complexity is exponential in the
size of the union of then constraints scopes.

4 This improvement was suggested by an anonymous reviewer.

5 Domain reformulation using symbolic values

If the phone book is incomplete, we must infer the missing bers to add to the vari-
ables’ domains. Michalowski and Knoblo¢k] proposed to enumerate all numbers
between 1 and the largest address that appears on the $tiegtapproach has two
problems. First, the choice of the upper limit is arbitrahen the largest address is
not in the phone book, this approach may yield incorrecttamis. The second prob-
lem with this approach is that the size of the domains becqrdsbitively large on
real-world data. We propose a reformulation of the varialiemains that reduces their
size using symbolic variables, thus solving both problems.

5.1 Symbolic values in the BID problem

Assume we have, on the even side of a stigethe set of buildingsBs={B1, B2,
..., Bs}, the set of phone-book addresses of even pdtity{S#12, S#18, and the
range of address numbers [2,624]. Any assignment cannanose than 3 numbers
in each of [2,12), (12,18), and (18,624]. Using symboliarealto represent an address
in a solution, we replace the domain [1,624] of each varidtjewith the significantly
smaller Set{sl, S92, S3, 12,84, S5, 18,86, S7, 88} Wheresl, S9, S3 € [2,12),84, S5 €
(12,18), andss, s7, sg € (18,624] ands; <s; for i<j. This process allows us to choose
arbitrarily large bounds on a given street. Figure 4 illatgs this transformation. More

Reformulated domain {8y, S, $;.12,S,,§ 18,5454 S

Original domain {2, 4, ..., 8, 10, 12, 14, 16, 18, 20, 22, ..., 622, 62
Fig. 4. Domain reformulation for the building-identification pieim.

generally, when [min,max] is the range of address numbeth®mronsidered side of
S, the address numbers i?y partition [min,max] into consecutive convex intervals. In
any such intervalig, i»), we cannot use more than minimudg|-| Ps|, | Z2=2=1 |)
addresses. Below we introduce IADIFF-ATMOST as a global constraint useful in such
situations and discuss how to reformulate the domains ofdhiables in the scope of
this constraint in order to reduce their size both for gelreard totally ordered domains.

5.2 TheALLDIFF-ATMOST global constraint

Example 1. An emerging country received an aid to build 7 talspon its territory,
but does not want to put more than 2 hospitals in areas with kigcanic activity.

We propose the constrainttADIFF-ATMOST to model this situation. Given a set of
variables4 = {V1, V4, ..., V,, } with domainsDy;, ALLDIFF-ATMOST(A, k, d), where
dCDy, fori € [1,n], k€N, andk<|d|, requires that (1) all variables take different
values and (2) at mostvariables in4 have values frord. Note that while the domains
Dy, may be differentd must be a subset of each one of them &hg, andd and Dy,
may be finite or infinité.

5 Many definitions of the AMOST constraint exist (e.g., ECLiPse and on page 14814}).
Our definition of ALLDIFF-ATMOST allows us to express a situation of interest to resource
allocation problems where our reformulation can be useddace the domain size.

Example 2. Consider with the variable&={11, V», V3, V,} of a CSP, withD;={1,
2, ..., 8 and the constrainALL DIFF-ATMOST(A, 2,{1, 3,4, 5,8}). The assignment
V15, Vo2, V37 andV, <4 satisfies the constraint.

We can express the above described situation for the BIDi@moas A L DIFF-ATMOST(Bs,
Ka, (i1, i2)) With k,=minimum(Bg|-| Ps|, | 2=0=1 |),

5.3 ALLDIFF-ATMOST reformulation

Our reformulation of the domains of the variables in BLDIFF-ATMOST constraint
is theorem constant, in the sense that solutions to themefated problem map to
solutions to the original problefd2]. The benefit of this reformulation is the reduction
of the domain sizes. Because the complexity of many CP tgoksidepends on the
sizes of the domains, the reformulation improves the sqieeformance.

We reformulate the domains of the variables in the scopesatdimstraint AL DIFF-
ATMOST(A, k, d) by introducingk valuess, that we callsymbolic valuess follows:

V‘/;EADwr:{81,82,...,Sk}U(Dw\d) (1)

where the symbolic values (1 < j < k) can take any distinct values ihh Applying
this reformulation on Example 2 yields the following donsiior all four variables:
Dy, ={s1, s2, 2, 6, T}, wheres;, sy can take any different values {1, 3, 4, 5, §. In
Example 1, the domains becorfi&, s} U {sites in non-volcanic arehsvheresy, so
are different and range over sites with volcanic activities

This reformulation operates on the problem formulation affielcts, strictly speak-
ing, both the ALDIFF-ATMOST constraint and the domains of the variables in its
scope, see Figure 5. However the most significant modificaiadhe domain refor-
mulation. We transform®, to D,, where inD, the domains of variables id have been
reformulated according to Equation (1). Replacihgith £ symbolic values reduces
the domains sizes hyi| — &, which is useful whem is large or infinite.

i
Uz .
-0 Formulation#,
CFormuIatlon %:(‘VUDO,COD 2 : Smaller domains with symbolic valu
G, Replace AlIDiff-Atmost with AlIDiff

Fig. 5. The reformulation of AL DIFF-ATMOST.

This operation is particularly useful during backtrackrsbavhere the domain val-
ues are enumerated. If we want to assign ‘ground’ valuesab sgmbolic value, we
can do so as a post-processing step while ensuring that twbddic values are always
mapped back to distinct ground values. While a solution &rtéformulated problem
does not map to a unique solution to the original problem, avegenerate any solution
to the original problem from some solution to the reformetbproblem. Of particular
concern is the interaction between this reformulation dreddther constraints in the
problem. When all the constraints in a problem can be checkdte symbolic values,
as in the case of the BID problem, the reformulation is soiilden one or more con-
straints in a problem must be checked on the ‘ground’ valines) propagation must
run on the appropriate representation for each constnaihizss soon as domain filtering

causesd| < k, then reformulated domains should be dropped andDAFF-ATMOST
replaced with a ALDIFF constraint, as is the case in a BID instance with a complete
phone-book. While this double representation works forst@int propagation, using

it during backtrack search requires further investigation

5.4 Symbolic intervals

When the values in the variables domains follow a total graein numeric domains,
the domains are commonly represented as intervals andramngiropagation is typ-
ically restricted to the endpoints of these intervals, abdr-consistency algorithms.
The reformulation of an AL DIFF-ATMOST in the presence of totally ordered domains
obviously remains valid. However, in order estrict propagation to the endpoints of
the intervalsrepresenting the domains, the following is needed:

1. We require the values ihto form a convex interval.
2. We must add total ordering constraints between the syimbalues:s; < sy <
. < Sk.

3. We must add total ordering constraints between the twe ke symbolic values,
s1 andsg, and their closest neighbors in the reformulated domaleSD_V and
Dy, be respectively the intervals ély, \d to the left and right of, and adjacent to,
d. The right endpoint oD}, must be less thasy, and the left endpoint aby,
must be greater thas),. Flgure 6 illustrates this transformation.

D{f‘i‘f = Dref,l U (515, .. 83 U Drefr

Fig. 6. ALL DIFF-ATMOSTreformulation for totally ordered domains.

4. When mapping the symbolic values back to ground valuegytbund values must
respect the total ordering imposed on the symbolic values.

In the BID problem, we use this particular form of the refotation of the ALL DIFF-
ATMOST on the building variables, which have totally ordered doreai

6 Problem relaxation by constraint removal

Removing (or adding) a constraint in a problem formulatioryield a necessary (or
sufficient) tractable approximation of the problem is a ¢tgpireformulation strategy.
Examples abound and include: In Al, admissible heuristirsegation for A (page 107

in [11]) and theory approximatidri 3]; in mathematical programming, linear relaxation
of integer programs, Lagrangian relaxat{dd], and the cutting-plane method. Below,
we show that removing the grid constraint from the BID praoblgields a tractable
problem that is a tractable necessary approximation of tBeplBoblem.

6.1 A tractable necessary approximation of the BID problem

We describe a construction to efficiently solve the BID penblin the absence of grid
constraints by finding a maximum matching in a bipartite graffe first recall some
terminology. LetG = (X UY, F) be a bipartite graph with edge sBt vertex set

V = X UY, and partitionsX andY’, which are independent sets of vertices. We define

10

amatch counfor each vertex i € V, which we denoten(v), to be a positive (non-

null) integer. Amatchingin G is a set of edged/ C F such that for alb € V there

exists at most one edge<c M incident tow. In this paper we consider a matching in

G to be a set of edgell C E such that for alb € V' there exists at most(v) edges

e € M incident tov. Further, we say that a matchiig saturates vertex iff M has

exactlym(v) edges incident te; and a matching/ saturates a sef iff M saturates

all vertices inS. A matching that saturateéscan be computed in polynomial tinh&5)].
Given an instance of the BID problem without grid constraimte construct a bi-

partite graphG = (BU S, F) as follows. First, assume an assignment to the orientation

variables (there are*2such assignments). For each buildifign the problem, add a

vertexb to B and set its match count to 1. For each steedt the problem, add two

verticess,qq ands.,.,, 10.5, one for each side of the street. Set the match count of each

s; to the number of phone-book addresses on stregth parity . For each building

(3, add an edge between vertieand the street vertex corresponding to the street side

on whichg may be. (Note that corner buildings are on two streets.)reigshows the

construction ofG for the map in Figure 2 where we assume that odd numbers appear

on the North and West sides of the street. We can show that&hingtin this graph

that saturate$ corresponds to a satisfactory assignment of streets t@ecbuildings.

We find a maximum matching using &@1{n>/?) algorithm by Hopcroft and Karfi6]

after replacing each vertex in the bipartite graph by as nventyces as its match count.

Fig. 7. Graph construction for Figure 2. Fig. 8. A saturating matching for Figure 7.

Figure 8 shows a saturating matching for the graph of Figunshére the edges
of the matching are darkened and the numbers in parenthetieate the match count.
This matching determines the satisfiability of the relaxéd Broblem, and yields as-
signments to all corner variables in the corresponding E8Pa complete solution, we
still need to instantiate the building variables, which bardone in linear time because
the constraint network becomes a set of chains after tharitiation of the backdoor
(corner) variables. While the matching approach is powgifdoes not model the grid
constraint. The tractability of the problem with grid caiaéhts remains an open ques-
tion.

6.2 Relaxing resource allocation problems

At the core of many resource allocation problems lies thélero of matching between
the elements of two sets: the tasks and the resources. Inagighe resource allocation
problem may be complex (and likely intractable). Howeves,may sometimes be able
to identify those constraints that, when removed, redueeotiginal problem into the

problem of finding a matching in a bipartite graph that sagg-ane of the two partitions
as described above. Figure 9 illustrates this relaxation.

6 The matching must saturat$ because the BID problem assumes that all addresses in the
phone book, whether complete or incomplete, must be asbigree building.

11

Py &
Formulation¥ o=(7 Dy Co) FormulationG = (V,E)
Query:Q , = Is the problem satisfiable? ~ | Query:Q , = Is there a matching saturating a partition of \

Fig. 9. Relaxing a CSP as a matching problem.

6.3 Using the relaxation in problem solving

We can use the above relaxation in four ways for the BID proldad for other appli-
cations that can be relaxed as a matching problem:

1. To solve problem instances that do not have the grid cainss; e.g[1].

2. As afirst preprocessing step to quickly rule out unsalifitnstances, i.e. before
Line 1 in Algorithm 1. Our experiments on the BID problem (motluded here
for lack of space) showed that this early preprocessingfectie only on tight
problems.

. As a second preprocessing between Line 5 and Line 6 in Alhgod, see Section 8.

4. As a lookahead mechanism when using search at Line 6 inritign 1. We use

the construction off17] to filter out, from the domains of the future variables, those
values that cannot yield a solution. As such, the relaxellpro appears as a (spe-
cial version of the) all-diff constraints dfi 7], added to the problem asn@wbut
redundant constraint to enhance propagation, see Section 8

w

7 Generating solutions by symmetry

The set of solutions to the relaxed problem of Section 6 cavbbened by enumerating
all maximum matchings using an algorithm such as the onegsegpby Und18]. In
this section, we characterize all maximum matchings in artite graph as symmetric
to a single base matching, and proposed to use this symmetnuimerate all solutions.
Our symmetry detection relies on two graph constructiossideed by Bergg19]:
alternating cyclegAltCyc) andeven alternating paths starting at a free ver(ExAltP).
An AltCyc or EVAItP in a graphG relative to a matchind/ alternate between edges
in M and edges not id/. If we take a maximum matchinty and a AltCyc or EVAItP
P, we can produce another maximum matchivig by computing the symmetric dif-
ference ofdM and P, denoted\/ AP. We use that mechanism to identify all maximum
matchings in a bipartite graphi as symmetric of a single maximum matchiify Let
S be the set of all AltCyc’s and EVAItP’s relative ttf . We construct another maxi-
mum matchingM; by choosing a disjoint subsé& C S and computingV/ AS;. M;
is symmetrical toM in that it is identical toM in all edges except those ;. In
fact, for any maximum matching/; of G, we prové that there exists a§; such that
M; = MAS;. We generaté by first orientingG using the construction described by
Hopcroft and Kard16]. From the oriented graph, we enumerate the alternatingspath
by finding all EVAItP’s, as defined by Berd&9]. We enumerate the AltCyc’s from the
strongly connected components in the oriented graph asideddy Régif17]. Thus,
to store the information necessary to enumerate all alteggaths and cycles, and

” The proof is omitted for lack of space.

12

therefore all maximum matchings, we only need to store desingse matching, the set
of free vertices, and the set of strongly connected compshen

Consider the bipartite grapi = (X UY, E), whereX = {1, z2, z3, 4}, Y =
{y1, y2, y3}, andE={(z1, y1), (w2, y1), (T2, y2), (¥3,Y2), (23,Y3), (T4, Y2), (T4, ¥3)}
Figure 10 (a) shows a maximum matchihfin G. P = z,y; 25 is an alternating path
andC' = z3y2x4ysx3 is an alternating cycle. We find other maximum matchingsaisin
the symmetric difference operator. Figure 10 (b) shbfAP, Figure 10 (c) shows
M AC, and Figure 10 (d) show®&/ A(C' U P).

(Formulation: The set of all maximum matchings)n (

X X X X
@ Y ° @ Y @ Y @ Y TO /U(no's algorithm ﬂl
@ @ @ @ FormulationG = (V,E) . _ _
@ @ @ @ Query:Q . = Enumerate all maximum matchings in G
¥2) (¥2))) ~ B2
@(@ @(® @(@ @(® Forn;ulatiqn: hind\
’ ' ’ ’ —A maximum matchin
@ () @ ’ @ @ —The set of strongly connected components in the oriented lgr
. a :

(b) (c) . (d) ~The set of free vertices in the oriented graph

Fig. 10. Multiple matchings saturating. Fig. 11.Finding all maximum matchings.

Figure 11 illustrates the two reformulations®§, the problem of enumerating all
maximum matchings. We can reformuld® asP,1, the set of all maximum match-
ings, using Uno’s algorithm. Alternatively, we can reforate the problem a$,.,

a base matching and its corresponding sets of strongly ctetheomponents and free
vertices. All matchings can be enumerated frBm as needed. Our construction has the
same time complexity as Uno's, which is linear in the numbdenaximum matching.
However, our characterization of the solutions as symeetnas valuable properties
which we do not fully exploit:

1. It provides a more compact representation of the set afisok. Rather than stor-
ing all matchings, we store a single matching, a set of styocwnnected compo-
nents, and a set of free vertices.

2. Incase oneis indeed seekalf or a given number of, the solutions to BID problem
(similarly, to a resource allocation problem that has a maxn matching relax-
ation), we can generate every symmetric matching to thatvkreingle matching
and test if it satisfies the additional constraints of the-relaxed problem, when
it does not, the matching is a solution to the non-relaxedblera found without
search. Naturally, the number of maximum matchings canrgela

8 Experiments
We integrate our techniques in the flowchart shown in Fig@renhich implements the
instruction in Line 6 of Algorithm 1. Table 1 describes theperties of the regions of
the the city of El Segundo (CA), on which we ran our experiraefihe number of calls
refers to the total number of calls to Line 6 of Algorithm 1 dBaall to Line 6 was timed
out after one hour. We report the number of timed out exenatibhe completeness of
the phone book indicates what percent of the buildings omidye have a corresponding
address in the phone book. We created the complete phone bigalg property-tax
data, and the incomplete phone books using the real-woddéibook.

8 An improvement suggested by an anonymous reviewer.

13

Table 1.Case studies used in experiments.

)) Case study Phone book Number of
Address—assignment problem instance completenesgbldgs crnr bldgs blks calls
- L NSeg125- 100.0% 4160
[Build the matching modé! NSeg125{ 45.6% 125 17 4 357
[Execute the matching sohjer NSeg206-¢ 100.0% | 54q 28 7 4879
NSeg206- 50.5% 10009
SSeg131- 100.0% 3833
’ < No)) SSeg131 60.3% 131 36 8 2379
matching solutiop— No solution exists SSegi78-¢ 100.0% 178 6) 2857
SSeg178- 65.6% 2477
Build the CSP model Table 2. Domain reformulation.
* Case studyfAvg. domain sizd Runtime [sec] | Timeouts
Execute backtrack search Orig. Ref. Orig. Ref. |Orig. Ref.

NSeg125-{1103.1 236.1 2943.7 7447 0 0

~Only instantiate corner buildings NSeg206-1102.0 438.8 148180 55335 0 O

-Lookahead with nFC3 I SSegl31- 792.9 192.9 67910.1 66901/ 18 17
—Lookahead using matching relaxation SSegl78- 7855 186.8119002.4 117826[732 29
-nFC3-CBJ .)
-Special variable ordering Table 3. Solvers’ performance (no grid).

Runtime [sec]
. Matching +
Does Case stud BT Matching 9
CSP solution No solution exists Symmetry
exist? NSeg125-4 139.2 438 0.03
NSeg125-i| 744.7 25 *
NSeg206-4 4971.2 16.3 0.06
Soluton Exists SSegIILIBIBT7F 0%
Fig. 12.Implementing Line 6 of Algorithm 1. ssgglsl:ic 569011 31 e
SSegl78-d117279.1 225 0.41
SSegl78-i|117826.7 4.9 *
* Did not finish in 1 hour.

Effect of domain reformulationTable 2 shows the effect of domain reformulation by
comparing the domain sizes and the cost of BT before and r@temulation. When
the phone book is complete, the reformulation is not usedoaAin. DIFF-ATMOST
constraints exist. The advantage of the reformulatioreiases with the incompleteness
of the phone book.

Effect of query reformulationAs stated in Section 4, the sheer number of solutions
made it impossible to solve problem instances with incoteghdone-books using the
query of enumerating all solutions. Thus, without the quefprmulation, we would
not have been able to solve the incomplete phone-book icestan

Effect of finding symmetrical maximum matchingsthe absence of grid constraints,
the building-identification problem can be solved in polgmal time by the match-
ing solver. Here we compare backtrack search, a solver gest Algorithm 1 with a
matching solver, and a solver that uses the reformulati@ywimetric matchings from
Section 7. Finding all symmetric matchings requires enatirgg all matchings, which
isn’t feasible for the under-constrained incomplete phboek problems. Thus, those
problem instances timed out and are indicated by astetigkgever, when the number
of solutions was small, such as when the phone-book is caeplee symmetry solver
had significantly better performance than the per-variaddéching solver. The benefit
in terms of runtime reduction is shown in Table 3.

Effect of relaxing a CSP into a matching probleffo test the use of the matching re-
laxation as a preprocessing step and lookahead mechanesadded grid constraints

14

to each region. Table 4 shows the results of these expergmamnparing the perfor-
mance of: (1) the backtrack search (BT), (2) BT with matcHorgpreprocessing (Pre-
proc+BT), (3) BT with matching for lookahead (Lkhd+BT), aff) BT with matching
for both purposes (Preproc+BT+Lkhd). We report runtimembar of timeouts, and
number of calls to the CSP solver saved by the preprocedsiafj.cases, the same so-
lutions were found. Our results indicate that, in genehad ihtegration of the matching
and BT improves performance. There are exceptions, whenadsieof the additional
processing exceeds the gains in terms of reduced search $fragever, even when we
saw performance degradation, the degradation was minimal.

Table 4. Improvements due to preprocessing and lookahead.

NSeg125-c + grid[CPU [sec] #Timeouts Calls saved SSeg131-c + grid CPU [sec] #Timeouts Calls saved
BT 100.8 0 - BT [17063.3 0 -
Preprocessing+BT| 33.2 0 97.0% Preprocessing+BT 5997.9 0 92.5%
BT+Lkhd 140.2 0 - BT+Lkhd 9745.8 0 -
Preproc+BT+Lkhd 39.6 0 97.0% Preproc+BT+Lkhd 4256.0 0 92.5%
NSeg125-i + grid|CPU [sec] #Timeouts Calls saved SSeg131-i + grid{CPU [sec] #Timeouts Calls saved
BT 1232.5 0 - BT | 114405.9 30 -
Preprocessing+BT| 1159.1 0 62.6% Preprocessing+BT 114141.3 29 74.2%
BT+Lkhd 726.6 0 - BT+Lkhd | 107896.3 30 -
Preproc+BT+Lkhd 701.1 0 62.6% Preproc+BT+Lkhd | 108646.5 30 74.2%
NSeg206-c + grid{CPU [sec] #Timeouts Calls saved SSeg178-c + gri CPU [sec] #Timeouts Calls saved
BT 22775 0 - BT [78528.6 14 -
Preprocessing+BT 614.2 0 98.9% Preprocessing+BT 15717.9 1 91.9%
BT+Lkhd 1559.2 0 - BT+Lkhd | 74172.0 14 -
Preproc+BT+Lkhd 443.8 0 98.9% Preproc+BT+Lkhd | 13961.1 1 91.9%
NSeg206-i + grid|CPU [sec] #Timeouts Calls saved SSeg178-i + grid{CPU [sec] #Timeouts Calls saved
BT 4052.8 0 - BT | 138404.2 35 -
Preprocessing+BT 3806.7 0 87.8% Preprocessing+BT 103244.7 25 72.7%
BT+Lkhd 3499.5 0 - BT+Lkhd | 121492.4 32 -
Preproc+BT+Lkhd 3510.0 0 87.8% Preproc+BT+Lkhd | 85185.9 22 72.7%

9 Related work and conclusions

Reformulation has been applied to a wide range of CSP prablgith much success.
The literature also encompasses approaches to modelisigaetion, approximation,
and symmetry detectiSnNadel studied 8 different models of theQueens problem,
some of which much easier to solve than otHé@. Glaisher proposed avoiding sym-
metry in the Eight Queens as far back as 1B7H4. Holte and Choueiry provide a gen-
eral discussion on abstraction and reformulation in Aludahg CSP$22]. Razgon et
al. [23] studied a class of problems that is similar to the one we tigae, and which
they call Two Families of Sets constraints (TFOS). Theyadtrced a technique for
reformulating TFOS problems into network flow problems. Geptually, the relaxed
problem we study in Section 6 constitutes a special caseeof BHOS problem.

An interesting feature of our work is the design of severahteques and their
integration in a comprehensive framework for solving th® Blroblem while high-
lighting their usefulness for general CSPs. Also, our quefgrmulation facilitates a
much wider use of relational consistency algorithms thas p@ssible before. In the

% Some successful dedicated meetings are: Symposium onaébetr, Reformulation and Ap-
proximation, Workshop on Modeling and Reformulation, W&rép on Symmetry in CSPs.

15

future, we intend to evaluate these techniques in otheiicgijon settings. For exam-
ple, we believe that many resource allocation problems h@atehing relaxations like
we described.

Acknowledgments.Experiments were conducted on the Research ComputingtFatiUNL.
This research is supported by NSF CAREER Award #0133568 lamdir Force Office of Sci-
entific Research under grant numbers FA9550-04-1-0105 AA899-07-1-0416.

References

1. Michalowski, M., Knoblock, C.: A Constraint Satisfaatidpproach to Geospatial Reason-
ing. In: AAAI 2005. (2005) 423-429
2. Pickering, T.: Speech by Under Secretary of State T. Firng@n 06/17/1999 to the Chinese
Government Regarding the Accidental Bombing of the PRC Es\pa Belgrade (1999)
3. van Beek, P., Chen, X.: CPlan: A Constraint Programmingréach to Planning. In: AAAI
1999. (1999) 585-590
4. Kilby, P., Slaney, J., Thiebaux, S., Walsh, T.: Backlzoard Backdoors in Satisfiability. In:
AAAI 2005. (2005) 1468-1373
5. Choueiry, B.Y., lwasaki, Y., Mcllraith, S.: Towards a Ptiaal Theory of Reformulation for
Reasoning About Physical Systems. Artificial Intelligedé2 (1-2)(2005) 145-204
6. Prosser, P.: MAC-CBJ: Maintaining Arc Consistency witbn@lict-Directed Backjumping.
Technical Report 95/177, Univ. of Strathclyde (1995)
7. Bessiere, C., Meseguer, P., Freuder, E., Larrosa, J.Fddmard Checking for Non-binary
Constraint Satisfaction. In: CP 1999. (1999) 88—-102
8. Freuder, E., Elfe, C.: Neighborhood Inverse Consistétrgprocessing. In: AAAI 1996.
(1996) 202—-208
9. Dechter, R., van Beek, P.: Local and Global Relationalsency. Journal of Theoretical
Computer Science (1996)
10. Dechter, R.: Constraint Processing. Morgan Kaufmafa3p
11. Russell, S., Norvig, P.: Atrtificial Intelligence: A MogteApproach. Prentice Hall (2003)
12. Giunchiglia, F., Walsh, T.: A Theory of Abstraction. HAidial Intelligence57(2-3) (1992)
323-389
13. Selman, B., Kautz, H.: Knowledge Compilation and Thedpproximation. Journal of the
ACM 43(2) (1996) 193-224
14. Milano, M., ed.: Constraint and Integer Programmingwdia a Unified Methodology.
Kluwer Academic Publishers (2004)
15. Gallai, T.:Uber extreme Punkt- und Kantenmengen. Ann. Univ. Sci. BasgjEotvos Sect.
Math. 2 (1959) 133-139
16. Hopcroft, J., Karp, R.: Am®/2 Algorithm for Maximum Matchings in Bipartite Graphs.
SIAM 2 (1973) 225-231
17. Régin, J.: A Filtering Algorithm for Constraints of Befence in CSPs. In: AAAI 1994.
(1994) 362-367
18. Uno, T.: Algorithms for Enumerating All Perfect, Maximuand Maximal Matchings in
Bipartite Graphs. In: Int. Symp. on Algorithms and CompiBAAC '97). (1997) 92-101
19. Berge, C.: Graphs and Hypergraphs. American Elsevést3)L
20. Nadel, B.: Representation Selection for Constrainisation: A Case Study Using n-
Queens. |IEEE ExpeB(3) (1990) 16—-24
21. Glaisher, J.: On the Problem of the Eight Queens. Plplisal Magazinel(48) (1874)
457-467
22. Holte, R.C., Choueiry, B.Y.: Abstraction and Reforntigia in Artificial Intelligence. Philo-
sophical Trans. of the Royal Society Sect. Biological Scés3581435) (2003) 1197-1204
23. Razgon, I., O'Sullivan, B., Provan, G.: Generalizingll Constraints Based on Network
Flows. In: Workshop on Constraint Modelling and Reformialiat (2006) 74-87

