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Abstract. In this paper, we argue that metrics that assess the perfor-
mance of backtrack search for solving a Constraint Satisfaction Problem
should not be visualized and examined only at the end of search, but
their evolution should be tracked throughout the search process in or-
der to provide a more complete picture of the behavior of search. We
describe a process that organizes search history by automatically recog-
nizing qualitatively significant changes in the metrics that assess search
performance. To this end, we introduce a criterion for quantifying change
between two time instants and a summarization technique for organiz-
ing the history of search at controllable levels of abstraction. We validate
our approach in the context of two algorithms for enforcing consistency:
one that is activated by a surge of backtracking and the second that
modifies the structure of the constraint graph. We also introduce a new
visualization for exposing the behavior of variable ordering heuristics
and validate its usefulness both as a standalone tool and when displayed
alongside search history.

Keywords: Search · Visualization · Constraint Satisfaction.

1 Introduction

In this paper, we propose a new perspective and visualization tools to under-
stand and analyze the behavior of the backtrack-search procedure for solving
Constraint Satisfaction Problems (CSPs). Backtrack search is commonly used
for solving CSPs. However, its performance is unpredictable and can differ widely
on similar instances. Further, maintaining a given consistency property during
search has become a common practice [13, 22, 43, 42, 30] and new strategies
for dynamically switching between consistency algorithms are being investi-
gated [18, 9, 16, 15, 41, 25, 29, 2, 1, 48, 3, 46]. While consistency algorithms
can dramatically reduce the size of the search space, their impact on the CPU
cost of search can vary widely. This cost is currently poorly understood, hard to
predict, and difficult to control.

? This research is supported by NSF Grant No. RI-1619344 and NSF CAREER Award
No. III-1652846. The experiments were completed utilizing the Holland Computing
Center of the University of Nebraska, which receives support from the Nebraska
Research Initiative.
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To gain an understanding of the behavior of search and its performance, most
previous work has focused on the visualization of various metrics at the end of
search. In contrast, we claim that it is sometimes advantageous to inspect the
history [20] or evolution of these metrics along the search process in order to
detect bottlenecks that can be addressed by specific tools (e.g., modify the topo-
logical structure of the constraint network [43] or enforce a particular high-level
consistency). As we demonstrate in this paper, it is sometimes not practical, or
even feasible, to manually carry out such an analysis. For this reason, we advo-
cate to automatically organize the history of search (i.e., its evolution over time)
as a sequence of regimes [23] of qualitatively distinct behaviors detected by sam-
pling the performance metrics during search. We claim that our visualizations
are useful to the researcher designing new adaptive strategies and consistency
algorithms as well as to the savvy engineer deploying constraint-programming
solutions.

Building on the visualizations proposed by Woodward et al. [46] for describing
search performance, we introduce the following contributions:

1. A criterion for computing the distance between two samples, quantifying the
change in search behavior.

2. A clustering technique for automatically summarizing the history of search
and its progress over time in a hierarchical structure that a human user can
inspect at various levels of details.

3. A new visualization that reveals and summarizes the behavior of a dynamic
variable ordering heuristic.

This paper is structured as follows. We first review background information
and the relevant literature. Then, we describe our contributions. For each contri-
bution, we highlight its usefulness with illustrative examples. Finally, we discuss
the usefulness of our approach and conclude with directions for future research.

2 Background and Related Work

Constraint Satisfaction Problems (CSPs) are used to model many combinatorial
decision problems of practical importance in Computer Science, Engineering, and
Management. A CSP is defined by a tuple (X,D,C), whereX is a set of variables,
D is the set of the variables’ domains, and C a set of constraints that restrict the
combinations of values that the variables can take at the same time. We denote
the number of variables |X|= n. A solution to a CSP is an assignment of values
to variables such that all constraints are simultaneously satisfied. Determining
whether or not a given CSP has a solution is known to be NP-complete. The
constraint network of a CSP instance is a graph where the vertices represent the
variables in the CSP and the edges represent the constraints and connect the
variables in their scope.

To date, backtrack search (BT) is the only sound and complete algorithm
for solving CSPs [7]. Backtracking suffers from thrashing when it repeatedly ex-
plores similar subtrees without making progress. Strategies for reducing thrash-
ing include intelligent backtracking, ordering heuristics, learning no-goods, and
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enforcing a given consistency property after every variable instantiation. En-
forcing consistency reduces the size of the search space by deleting, from the
variables’ domains, values that cannot appear in a consistent solution given the
current search path (i.e., conditioning). In recent years, the research commu-
nity has investigated higher-level consistencies (HLC) as inference techniques
to prune larger portions of the search space at the cost of increased processing
effort [17, 13, 33, 6], leading to a trade-off between the search effort and the time
for enforcing consistency. We claim that our visualizations are insightful tools to
understand why and where to apply HLCs and to assess their effectiveness.

In this paper, we use by default dom/wdeg [10], a dynamic variable ordering
heuristic (and dom/deg [5] where indicated). Below, we summarize the consis-
tency properties that we enforce. We always maintain Generalized Arc Con-
sistency (GAC) [26] during search. In addition to GAC, we enforce, as HLCs,
Partition-One Arc-Consistency (POAC) [4], which filters the domains of the
variables by performing singleton testing, and Partial Path Consistency (PPC)
[8], which filters the constraints after triangulating the constraint graph. Both
POAC and (strong) PPC are strictly stronger than GAC. In order to control their
cost, we enforce the HLCs in a ‘selective/adaptive’ manner using the PrePeak+

strategy of Woodward et al. [46] for POAC (denoted PrePeak+-POAC) and
the Directional Partial Path Consistency of Woodward [45] (denoted DPPC+).
PrePeak+ triggers POAC by watching the numbers of backtracks and follows
geometric laws to increase or decrease the calls to POAC. DPPC+ chooses a
subset of the triangles of the triangulated constraint network on which it calls
PPC in a manner to reduce the addition of new constraints while increasing
propagation across the network. Finally, we use a k-way branching strategy for
search. However, preliminary tests on Choco [12], on which we tested GAC and
implemented POAC, show similar shapes of the visualizations.

Prior research on search visualization has appeared in the Constraint Pro-
gramming literature. Most previous approaches, such as the ones discussed be-
low, can be viewed as tools for inspecting and debugging search. The DiSCiPl
project provides extensive visual functionalities to develop, test, and debug con-
straint logic programs such as displaying variables’ states, effect of constraints
and global constraints, event propagation at each node of the search tree, and
identifying isomorphic subtrees [11, 38]. Many useful methodologies from the
DiSCiPl project are implemented in CP-Viz [39] and other works [37]. The OZ
Explorer displays the search tree allowing the user to access detailed informa-
tion about each tree node and to collapse and expand failing trees for closer
examination [34]. This work is currently incorporated into Gecode’s Gist [35].
The above approaches focus on exploring in detail the search tree to examine
and inspect the impact of individual search decisions on a particular variable,
constraint, variable domain, or even a subtree of the search. In contrast, our
work proposes to summarize the evolution of search along a given dimension
(i.e., projection), providing a qualitative, abstract view of a search tree that is
too large to be explored. We believe that the above approaches are orthogonal
and complementary to ours.
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Ghoniem et al. [19] propose a variety of heatmap visualizations to illustrate
the operation of constraint propagation across an instance. Their heatmaps illus-
trate the impact of the activity of a variable or of a constraint on other variables
or constraints in terms of filtering the variables’ domains or causing further con-
straint propagation. These visualizations are fine grained and inform the user
of the effect of a particular decision. They have pedagogical value and can also
be useful for debugging. They differ from our approach in that the user has the
burden of identifying the animation frames of interests. Relatively short behav-
iors can go unnoticed and long behaviors can be wasteful of the user’s time. In
contrast, our regime-identification process automatically organizes search his-
tory into a sequence of ‘interesting’ episodes. We consider their contribution too
to be orthogonal and complementary to our approach.

Tracing the search effort by depth of the search tree was first proposed for
the number of constraint checks and values removed per search level (Epstein et
al. [16]) and for the number of nodes visited (Simonis et al. [39] in CP-Viz, also
used for solving a packing problem [40]). More recently, Woodward et al. [46]
propose to focus on the number of backtracks per depth (BpD) to assess the
severity of thrashing and on the number of calls to an HLC per depth (CpD)
to explain the cost of enforcing an HLC, see Fig. 1. Further, they split the CpD
into three line charts, showing in green the HLC calls that prune inconsistent
subtrees and yield domain wipeouts (most effective), in blue those that filter the
domains of future variables (effective), and in red those that do not filter the
domain of any future variable (wasteful). Finally, they superimpose the CpD to
the BpD chart in order to reveal the effectiveness of the consistency enforced
(and that of the adaptive strategy for enforcing an HLC, when applicable).
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Fig. 1: From Woodward et al. [46]: Number of backtracks (BpD) and calls (CpD) to
POAC per depth at the end of search for benchmark instance pseudo-aim-200-1-6-4
using dom/wdeg. Left: GAC. Right: APOAC, an adaptive POAC by Balafrej et al. [1].
The CPU time, #NV (number of nodes visited), and #BT (number of backtracks) are
typically used to indicate the cost of search.
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3 Tracking Search History

To the best of our knowledge, previous approaches to visualizing the various
search ‘metrics per depth’ of the search tree (e.g., number of nodes visited, con-
straint checks, or backtracks) present the values reached at the end of search
thus providing a ‘blanket’ summary where thrashing occurred and search in-
vested the most resources. They fail to identify the problems that occur during
search. We argue that these visualizations may mask important information,
such as transient behaviors of search, that an algorithm developer or a savvy
user need to examine and address in order to solve the problem. In this paper,
we propose to track the progress of search by collecting samples of the BpD ‘pro-
file’ during search, see Fig. 2.3 In the examples discussed in this paper, we use

r1 r2 re

Search history

t0 t1 t2 tm

time

Fig. 2: BpD and CpD are sampled, during search, at times ti (0 < i ≤ max), and the
corresponding line charts are portioned into successive regimes of equivalent behavior
that collectively describe the history of search progress

a sampling rate of 100 milliseconds. To this end, we propose a criterion for de-
ciding whether two consecutive samples are ‘equivalent’ and pertain to the same
qualitative regime [23] of search. The sequence of regimes yields a history [20]
of the search.

Below, we first introduce a criterion for assessing distance between two BpD
samples. Then, we describe how to build a summarization tree using agglomera-
tive hierarchical clustering and how the tree can be used to allow the human user
to examine the search history at the desired level of detail. Finally, we provide
two illustrative examples.

3.1 Distance Between two BpD Samples

We adopt the following notations. D = [1, dmax] is the domain of the depth of
the search tree for solving the CSP. In a k-way backtrack search, dmax = n; in a
binary-branching scheme, dmax ≤ na, where a is the maximum domain size. We
sample search, recording the cumulative number of backtracks per depth (BpD)
at each sampling instant. BT(d, t) designates the number of backtracks executed
by search at depth d ∈ D from the beginning of search until time t. The first
regime starts at t = 0 and we set BTd∈D(d, 0) ≡ 0. The last regime ends at tm

3 Note that we can interrupt search at any time to conduct the analysis and need not
wait until the end of search.
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and corresponds to the last sample collected. We say that two time instants t
and t′ do not belong to the same qualitative regime if their corresponding BpD
curves ‘differ enough’ according to some divergence or distance criterion. Below,
we introduce one such criterion.

To measure the distance between BpDs at time stamps t and t′, we adapt,
to our context, the Kullback-Leibler (KL) divergence (also called relative en-
tropy) [24]. Given two discrete probability distributions P and Q defined on
the same probability space, χ, the KL-divergence from Q to P , which is always

non-negative, is defined as: DKL(P || Q) =
∑
x∈χ P (x) log

(
P (x)
Q(x)

)
.

In order to adapt the KL-divergence to our context, we introduce the proba-

bility that BT(d, t) take a given value as p(d, t) = BT(d,t)∑
d∈D BT(d,t) . In order to avoid

having this probability be zero when BT(d, t) = 0, we use Laplace Smoothing

[27], approximating this probability with p̂(d, t) = BT(d,t)+α∑
d∈D BT(d,t)+αdmax

and using

α = 0.1 in our experiments. Finally, we define the divergence div(t, t′) = div(t′, t)
between two BpD curves at time t and t′ as

div(t, t′) = max

(∑
d∈D

p̂(d, t) log

(
p̂(d, t)

p̂(d, t′)

)
,
∑
d∈D

p̂(d, t′) log

(
p̂(d, t′)

p̂(d, t)

))
(1)

Further, we define the distance between two regimes as the divergence be-
tween the two BpDs located at the middle sample of the corresponding regimes.
Another alternative, a little more costly, is to use the largest divergence between
any two samples in the regimes. Other options exist, preliminary evaluations did
not exhibit a significant sensitivity to this choice.

3.2 Clustering Tree and Summarization Tree

We propose to summarize the history of the search following the idea of agglom-
erative hierarchical clustering described by Nielsen [28, Chapter 8], which yields
a binary tree.

Starting from the sequence of BpD samples (collected during search and
ordered along the time line), we form the leaf nodes of the clustering tree storing
one sample per node. We place these nodes in a vector Q. Then,

1. We determine the divergence between every two consecutive nodes in Q
(those that store temporally adjacent samples).

2. We generate a parent for the two nodes with the smallest divergence value.
3. We replace, in Q, the two nodes with their parent.
4. We associate, to the parent, the concatenation of the sample sequences of

the two children, ordered in increasing time.
5. We store, for the parent, the divergence value between its children.
6. We choose as representative of the new node the middle sample, breaking

ties by using the earlier sample.

We iteratively apply the process until |Q|= 1. We call this tree the clustering
tree and reuse it every time a new summarization is needed.
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Finally, we identify the deepest nodes in the tree with a stored divergence
value larger than or equal to a user-defined value δ and replace each such node by
a new regime node. The regime node inherits from the node that it replaces, its
representative middle sample, its divergence value, and the sequence of samples
stored at the leaves of the corresponding subtree. We call the resulting structure
a δ-summarization tree. The dendrogram shown in Fig. 3 illustrates this process.

r1 r2 re

t0 t1 t2 tm

Divergence

time

δ + 	ϵ

Fig. 3: Dendrogram of the summarization tree, showing the sequence of ‘cluster’ merg-
ers and the divergence value at which each merger occurs (with ε ≥ 0)

The clustering tree stores samples at its leaves and does not use or depend on
δ. The summarization tree uses δ to ‘trim’ the lower levels of the clustering tree,
replacing them with regimes for explanation, which can be done interactively
and is computationally cheap. Thus, if the summarization is too detailed or too
abstract, the user may adjust δ to quickly regenerate a new history from the
clustering tree to reach a level of detail that is cognitively satisfying. Further,
iteratively adding samples to the clustering tree as search proceeds can be done,
online, in logarithmic time. Consequently, building and maintaining the cluster-
ing tree can efficiently be done online, during search. However, this direction
remains to be investigated.

In addition to the data structures used for the hierarchical clustering [36],
we introduce two data structures: first, Q, implemented as a vector of size m,
where m is the number of samples collected. Then, another vector to store the
data of the non-leaf nodes of the clustering tree. This size of this vector is m− 1
because the clustering tree is a full binary tree. The clustering tree can be built
in O(m2) time and O(m) space [14].

3.3 Illustrative Example: Explaining Adaptive Consistency

In this section, we compare the behavior of search for solving the SAT instance
aim-200-2-0-sat-1 [50]. GAC takes less than 10 minutes and generates 14
million backtracks. PrePeak+-POAC, on the other hand, solves the instance in
little over a minute, netting only 1.2 million backtracks. To see why, we examine
the corresponding search histories shown in Fig. 4a and 4b. We see that initially,
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(a) aim-200-2-0-sat-1, GAC, dom/wdeg: Dendrogram (top), history with δ=0.1 (bottom)

(b) aim-200-2-0-sat-1, PrePeak+-POAC, dom/wdeg: History (δ=0.05) superimposed CpD (green: wipeout; blue: filtering)

Fig. 4: aim-200-2-0-sat-1: Histories with GAC (top) and with PrePeak+-POAC (bottom), using dom/wdeg. Showing the
middle BpD sample in each regime and, for reference, the final sample collected.
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both searches proceed exactly in the same manner. The behavior of PrePeak+-
POAC starts to diverge from that of GAC at the fifth regime of PrePeak+-
POAC (Fig. 4b) where PrePeak+ reacts to the sharp increase of the number
of backtracks around depth 100 and triggers POAC. POAC successfully prunes
inconsistent subtrees (green calls) or decreases the size of search tree (blue calls).
By examining the last three regimes of PrePeak+ (Fig. 4b), we see how the
HLC successfully reduces the severity of the backtracking, reducing the peak in
height, width, and even in position. By investing in opportunistic and effective
(even if costly) calls to POAC, we significantly reduce the search time.

3.4 Illustrative Example: Analyzing Structure

In this section, we show how the identification and visualization of the regimes
of search provide insight into the structure of a problem instance and guide the
choice of the appropriate type of consistency for solving it.

We consider the graph-coloring instance mug100-25-3 [50] and try to solve
it with GAC using dom/wdeg for dynamic variable ordering. Search fails to
terminate within two hours. The inspection of the BpD of GAC (left of Fig. 5)
at the end of the unsuccessful search reveals the presence of a ‘dramatic’ peak
of the number of backtracks at depth 83 (i.e., relatively deep in the search tree).
This behavior hints that search may have made a bad decision at a shallower
level of search from which it could not recover.

Fig. 5: mug100-25-3: GAC (left); constraint network (center); DPPC+ (right).

The inspection of the history of search, shown in Fig. 6a, reveals six regimes.
Search generates a first peak at depth 34 (Regimes 1 and 2) before generating
a second peak at depth 86 (Regimes 3 and 4). Then, this second peak grows
larger, dwarfs the first, shifts to depth 61, and settles at depth 83. Further,
Regime 1 reveals a peak of magnitude 2,834 backtracks at depth 34, which
corresponds to instantiating about one third of the variables in the problem.
Regime 2 shows that search has overcome the initial bottleneck in the instance
occurring at depth 34 with a magnitude of 4,556 backtracks but is struggling
again with a second bottleneck at depth 86 with a magnitude of 4,624 back-
tracks. Regime 3 shows that the severity of the first bottleneck is dwarfed by a
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(a) History (δ=0.1) of GAC, dom/wdeg shows six regimes

(b) History (δ=0.1) of DPPC+, dom/wdeg shows a unique regime

Fig. 6: Histories of mug100-25-3 with GAC and DPPC+. Showing the middle BpD sample in each regime and, for reference,
the final sample collected.
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dramatic increase of the second bottleneck, which reaches 237,705 backtracks at
depth 86. As time progresses, the peak moves to shallower levels, to depth 61.
Although the peak keeps moving to deeper levels, search struggles and is un-
able to conclude. Another noteworthy information is the time scale at which
the regimes are identified. The first three regimes take place within the first five
seconds of search whereas the last three regimes occur at larger time scales. It
seems presumptuous to expect a human user to identify and isolate behavior
occurring at such small time scales.

The observation of the two bottlenecks prompts us to examine the constraint
network of the problem instance looking for some structural explanation for the
non-termination of search. Indeed, we expect the graph to exhibit some par-
ticular configuration such as two overlapping cliques. The examination of the
constraint graph, shown at the center of Fig. 5, refutes our two-cliques hypoth-
esis but reveals the existence of a few large cycles as well as many cycles of size
three or more. Previous work argued that the presence of cycles can be detrimen-
tal to the effectiveness of constraint propagation and showed how triangulation
of the constraint network allows us to remedy the situation [43, 44, 47]. With this
insight, we consider enforcing, during search, Partial Path Consistency (PPC)
instead of GAC because the algorithm for PPC operates on existing triangles and
on triangulated cycles of the constraint network [8]. Because PPC is too expen-
sive to enforce during search, Woodward proposed a computationally competitive
algorithm to enforce a relaxed version of Directional Partial Path Consistency
(DPPC+) [45]. By enforcing a strong consistency along cycles, search is able to
detect the insolvability of mug100-25-3 and terminates in less than 20 seconds.
The corresponding history of search, shown in Fig. 6b, exhibits a unique regime.

Figure 5 (right) shows the BpD of search while enforcing DPPC+ on the
mug100-25-3 instance. This chart shows a peak of 13,536 backtracks at depth 34.
Table 1 compares the cost of search with GAC and with DPPC+. The sign ‘>’
indicates that search does not terminate within the allotted two hours.

Table 1: Performance of search (dom/wdeg) on mug100-25-3: GAC versus DPPC+

GAC DPPC+

CPU time (sec) > 8,082.4 19.8
#Nodes visited 851,130,992 288,976
#Backtracks 697,346,084 236,356
maxd∈D(BT(d, tmax)) 25,953,973 13,536
arg maxd∈D(BT(d, tmax)) 83 34

Above, we showed how the visualizations and regimes of search behavior allow
us to form a hypothesis about the issues encountered by search and attempt an
alternative technique that is usually avoided because of its cost, culminating in
successfully solving a difficult instance.
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4 Visualizing Variable Ordering

Heuristics for variable ordering remain an active area of research in Constraint
Programming. Currently, dom/wdeg [10] is considered the most effective general-
purpose heuristic. When running experiments on benchmark problems, we en-
countered a puzzling case where search did not terminate when using dom/wdeg
but safely terminated, determining inconsistency, when using dom/deg. We pro-
pose variable-instantiation per depth (VIpD) as a visualization to summarize the
behavior of a variable ordering heuristic.

4.1 Variable-Instantiation per Depth (VIpD)

We denote by I(v, d, t) the number of times variable v is instantiated at a given
depth d from the beginning of search until time t. For a variable v ∈ X, we
define the weighted depth:

dw(v, t) =

∑
d∈D I(v, d, t) · d∑
d∈D I(v, d, t)

(2)

We introduce the VIpD chart at time t as a two-dimensional heatmap of I(·, ·, t)
using, as x-axis, the depth of search and, as y-axis, the variables of the CSP listed
in their increasing dw(·, t) values (ties broken using a lexicographical ordering of
the names of the variables).

4.2 Illustrative Example

We try to solve the instance mug100-1-3 [50] of a graph coloring problem using
GAC, but searches with dom/wdeg and with dom/deg fail to terminate after
two hours of wall-clock time. In a next attempt, we maintain POAC during
search; search with dom/wdeg did not terminate but, with dom/deg, it termi-
nated after 47 minutes and determined that the instance is inconsistent. Table 2
compares the performance of POAC with dom/wdeg and dom/deg. The sign ‘>’
indicates that search did not terminate within two hours.

Table 2: Performance of search on mug100-1-3 using POAC

POAC dom/wdeg dom/deg

CPU time (sec) > 8,085.4 2,836.5
#Nodes visited 37,811,011 25,178,511
#Backtracks 32,031,950 14,955,444
maxd∈D(BT(d, tmax)) 1,042,601 1,393,204
arg maxd∈D(BT(d, tmax)) 54 57

The comparison of the VIpD of POAC with dom/wdeg and that with dom/deg
reveals an erratic behavior of dom/wdeg (Fig. 7). Indeed, dom/wdeg, which
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Fig. 7: Variable Instantiation per Depth (VIpD) on mug100-1-3. Left: POAC with
dom/wdeg after two hours. Right: POAC with dom/deg after 47 minutes.

learns from domain wipeouts, is unable to determine the most conflicting vari-
ables on which it should focus. Instead, it continually instantiates a large number
of variables over a wide range of depth levels in search. In contrast, dom/deg
exhibits a more stable, less chaotic behavior. It focuses on the variables that
yield inconsistency and is able to successfully terminate. The VIpD charts are
also available as an Excel file where the user may analyze individual cells to
examine their I(·, ·, t) values.

Comparing the histories alongside the VIpD charts (see Fig. 8), we see clearly
that dom/wdeg is erratic and chaotic since the beginning of search whereas
dom/deg is able to quickly focus on a relatively localized conflict to determine in-
consistency of the problem instance. The peak of the BpD is sharper for dom/deg
than for dom/wdeg and the VIpD shows a smaller set of variables is affected by
the backtracking in dom/deg than in dom/wdeg. Future work could analyze this
information to identify the source of conflict.

5 Discussion

We illustrated the usefulness of our approach in three case studies (summarized
in Tab. 3). The first example (Sect. 3.3) compares two search histories to explain
the operation and effectiveness of an adaptive technique (perhaps to a student or
to a layperson). The same process can be used by a researcher or an application
developer to explore the impact of, and adjust, the parameters of a new method.
In the second example (Sect. 3.4), search fails because of a transient behavior at
a tiny time scale detected by our automatic regime identification. Without this
tool, the user may never notice the issue in order to explore effective solutions.

Beyond the scenarios and the metrics discussed above, we believe that build-
ing and comparing search histories are useful to explore, understand, and ex-
plain the impact, on the behavior and performance of search, of many advanced
techniques such as no-good/clause learning, restart strategies, consistency algo-
rithms, variable ordering heuristics, as well as the design of new such algorithms.
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(a) POAC with dom/wdeg after two hours.

(b) POAC with dom/deg after 47 minutes.

Fig. 8: History and VIpD of POAC on mug100-1-3: dom/wdeg (top), dom/deg (bot-
tom)

We strongly believe that our approach is beneficial in the context of existing
constraint solvers such as Choco [12] and Gecode [35]. As stated above, prelimi-
nary tests on GAC and POAC [32] on Choco have shown similar BpD and CpD
line-charts to those we see in k-way branching. Further, propagators in such
solvers are often implemented on the individual constraints themselves, which
makes the accounting of the calls to various types of consistencies particularly
well adapted.
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Table 3: Illustrative examples: the instances used and the corresponding search history

aim-200-2-0-sat-1 mug100-25-3 mug100-1-3

Consistency GAC PrePeak+ GAC DPPC+ POAC
-POAC

Displayed in. . . Fig. 4a Fig. 4b Figs. 5, 6a Figs. 5, 6b Figs. 7, 8a Figs. 7, 8b

CPU (msec) 569,633.2 60,953.1 8,082,215.3 19,833.0 8,085,417.6 2,836,475.7

Threshold (δ) 0.1 0.05 0.1 0.1 0.1 0.1

# Samples 5,639 604 80,014 197 79.345 28,025

# Regimes 5 7 6 1 3 3

History H1 H2 H3 H4 H5 H6
The histories with the durations of their regimes, listed chronologically:
H1: [202 msec, 101 msec, 606 msec, 17,982 msec, 550,742 msec]
H2: [101 msec, 202 msec, 101 msec, 1,010 msec, 6,370 msec, 16,175 msec, 36,994 msec]
H3: [1,515 msec, 606 msec, 4,848 msec, 107,067 msec, 423,119 msec, 7,545,060 msec]
H4: [19,833 msec]
H5: [101 msec, 304 msec, 8,085,012 msec]
H6: [101 msec, 101 msec, 2,836,273 msec]

The SAT community is another one that could benefit from our work. In
SAT solvers, inprocessing (in the form of the application of the resolution rule)
interleaves search and inference steps [21, 49]. Resolution is allocated a fixed per-
centage of the CPU time (e.g., 10%) and sometimes its effectiveness is monitored
for early termination. We believe that inference should be targeted at the ‘areas’
where search is struggling rather than following a predetermined and fixed effort
allocation. We claim that understanding where search struggles and how that
struggle changes can be used to identify where inference is best invested.

While our work does not generate verbal explanations, we claim that the
graphical tools directly ‘speak’ to a user’s intuitions.

6 Conclusions

In this paper, we presented a summarization technique and a visualization to al-
low the user to understand search behavior and performance on a given problem
instance.

Currently, our approach provides a ‘post-mortem’ analysis of search, but our
ultimate goal is to provide an ‘in-vivo’ analysis and allow the user to intervene
in, and guide, the search process, trying alternatives and mixing strategies while
observing their effects on the effectiveness of problem solving. A significantly
more ambitious objective is to use the tools discussed in this paper as richer
representations than mere numerical values to automatically guide search [31].

Future work includes the development of animation techniques based on the
proposed visualizations.
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