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C()NSTRRINT
SRTISFRCTI(lN

Constraint satisfaction refers to a set of representa-
tion and processing techniques useful for model-
ing and solving combinatorial decision problems;
this paradigm emerged from the artificial intelligence
community in the early 1970s. A constraint satis-
faction problem (CSP) is defined by three elements:
(1) a set of decisions to be made , (2) a set of choices
or alternatives for each decision, and (3) a set of con-
straints that restrict the acceptable combinations
of choices for any two or more decisions. In general,
the task of a CSP is to find a consistent solution-
that is, a choice for every decision such that all the
constraints are satisfied. More formally, each deci-
sion is called a variable,the set of alternative choices
for a given variable is the set of values or dontain of
the variable, and the constraints are defined as the set
of allowable combinations of assignments of values
to variables. These combinations can be given in ex-
tension as the list of consistent tuples, or defined in
intention as a predicate over the variables.

The 4-Queen Problem
A familiar example of a CSP is the 4-queen problem.
In this problem, the task is to place four queens on
a 4x4 chessboard in such a way that no two queens
attack each other. One way to model the 4-queen
problem as a CSP is to define a decision variable for
each square on the board. The square can be either
empty (value 0) or have a queen (value 1). The con-
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straints speciff that exactly four of the decision vari-
ables have value I ("queen in this square") and
that there cannot be two queens in the same row, col-
umn, or diagonal. Because there are sixteen variables
(one for each square) and each can take on two pos-
sible values, there are a total of 2t6 (65,536) possible
assignments of values to the decision variables. There
are other ways of modeling the 4-queen problem
within the CSP framework One alternative is to treat
each row on the board as a decision variable. The
values that can be taken by each variable are the four
column positions in the row. This formulation yields
44 (256) possibilities. This example illustrates how
the initial formulation or model affects the number
of possibilities to be examined, and ultimately the
performance of problem solving.

CSP Representations
(

A CSP is often represented as an undirected graph
(or network), which is a set of nodes connected by
a set of edges. This representation opens up the
opportunity to exploit the properties and algorithms
developed in graph theory for processing and solv-
ing CSPs. In a constraint graph, the nodes represent
the variables and are labeled with the domains of the
variables. The edges represent the constraints and
link the nodes corresponding to the variables to
which the constraints apply. The ariry of a constraint
designates the number of variables to which the con-
straint applies, and the set of these variables consti-
tutes the scope of the constraint. Constraints that apply
to two variables are called binary constraints and are
represented as edges in the graph. Constraints that
apply to more than two variables are called non-
binary constraints. While, early on, most research
has focused on solving binary CSPs, techniques for
solving nonbinary CSPs are now being investigated.

The Rote of CSPs in Science
Beyond puzzles, CSPs have been used to model
and solve many tasks (for example, temporal rea-
soning, graphical user interfaces, and diagnosis) and
have been applied in many real-world settings (for
example, scheduling, resource allocation, and prod-
uct configuration and design). They have been used
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in various areas of engineering, computer science,
and management to handle decision problems.
A natural extension of the CSP is the constrained
optimization problem (COP), where the task is to
find an optimal solution to the problem given a set
of preferences and optimization criteria. The prob-
lems and issues studied in the constraint processing
(CP) community most obviously overlap with those
investigated in operations research, satisfiability and
theoretical computer science, databases, and pro-
gramming languages. The 1990s have witnessed a
sharp increase in the interactions and cross-fertilization
among these areas.

A special emphasis is made in CP to maintain
the expressiveness of the representation. Ideally, a
human user should be able to naturally express the
various relations governing the interactions among
the entities of a given problem without having to re-
cast them in terms of complex mathematical mod-
els and tools, as would be necessary in mathematical
Programming. The area of constraint reformulation
is concerned with the task of transforming the prob-
lem representation in order to improve the perfor-
mance of problem solving or allow the use of available
solution techniques. Sometimes such transforma-
tions are truthful (that is, they preserve the essence
of the problem), but often they introduce some
sufficient or necessary approximations, which may
or may not be acceptable in a particular context.

domain of  B is  the in terva l  [7  ,  I  I  ] ) ,  and B oc_
curred one hour after A (B-A > l). It is easy to in_
fer that the domains of A and B must be restricted
to [8, l0] and [9, l1] respectively, because B can_
not possibly occur before 9, or A after 10, without
violating the constraint between A and B. This fil-
tering operation considers every combination of traro
variables in a binary CSP.It is called 2-consistency.
A number of formal properties have been proposed
to characterize the extent to which the alternative
combinations embedded in a problem description
are likely to yield consistent solutions, as a mea-
sure of how "close is the problem to being solved."
These properties characterize the level of consistency
of the problem (for example, k-consistency, mini-
mality, and decomposability).

Algorithms for achieving these properties, also
known as constraint propagation algorithms, remain
the subject of intensive research. Although the cost
of commonly used constraint propagation algorithms
is a polynomial function of the number of variables
of the CSP and the size of their domains, solving the
CSP remains, in general, an exponential-cost process.
An important research effort in CP is devoted to find-
ing formal relations between the level of consistency
in a problem and the cost of the search process used
for solving it. These relations often exploit the topol-
ogy of the constraint graph or the semantic proper-
ties of the constraint. For example, a tree-structured
constraint graph can be solved backtrack-free after
ensuring 2-consistency, and a network of constraints
of bounded differences (typically used in temporal
reasoning) is solved by ensuring 3-consistenry.

Systematic Search
In systematic search, the set of consistent combi-
nations is explored in a tree-like structure starting
from a root node, where no variable has a value, and
considering the variables of the CSP in sequence.
The tree is typically traversed in a depth-first man-
ner. At a given depth of the tree, the variable under
consideration (current variable) is assigned a value
from its domain. This operation is called variable in-
stantiation.It is important that the value chosen for
the current variable be consistent with the instan-
tiations of the past variables. The process of check-
ing the consistenry of a value for the current variable

Solution lllethods
The techniques used to solve a CSP can be divided
into tno categories: constraint propagation (or infer-
ence) and search. Further, search can be carried out
as a systematic, constructive process (which is ex-
haustive) or as an iterative repair process (which of-
ten has a stochastic component).

Constraint Prop agation
Constraint propagation consists in eiiminating, from
the CSP, combinations of values for variables that
cannot appear in any solution to the CSP. Consider
for example two CSP variables A and B representing
two  even ts .  Assume tha t  A  occu r red  be tween
8 a.m. and 12 p.m. (the domain of A is the interval
[8, l2]), B occurred between 7 a.m. and 11 a.m. (the
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with the assignments of past variables is called back-

checking.It ensures that only instantiations that are

consistent (part ial solutions) are explored' I f  a

consistent value is found for the current variable,

then this variable is added to the list of past variables

and a new current variable is chosen from among

the un-instantiated variables (future variables)'

Otherwise (that is, no consistent value exists in the

domain of the current variable), backtracking is ap-

plied. Backtracking undoes the assignment of the

previously instantiated variable, which becomes the

current variable, and the search Process attempts

to find another value in the domain of this variable'

The process is repeated until all variables have

been instantiated (thus yielding a solution) or back-

track has reached the root of the tree (thus proving

that the problem is not solvable).Various techniques

for improving the search process itself have been pro-

posed. For systematic search, these techniques in-

clude intelligent backtracking mechanisms such as

b ackj ump ing an d confl ict- dire cte d b a ckj umpin g'

These mechanisms attemPt to remember the reasons

for failure and exploit ttrem during search in order

to avoid exploring barren portions of the search

space, commonly."lt.d thrashing.The choices of the

variable to be instantiated during search and that of

the value assigned to the variable are handled, re-

spectively, by variable and value orderingheuristics,
which attempt to reduce the search effort' Such

heuristics can be applied statically (that is, before the

search starts) or dynamically (that is, during the

search process). The general principles that guide

these selections are "the most constrained variable

first" and "the most promising value first." Examples

of the former include the least domain heuristic
(where the variable with the smallest domain is cho-

sen for instantiation) and the minimal-width heuris-

tic (where the variables are considered in the ordering

of minimal width of the constraint graph).

Iter ativ e - Rep air S e ar ch
In iterative repair (or iterative improvement) search,

all the variables are instantiated (usually randomly)

regardless of whether or not the constraints are

satisfied. This set of complete instantiations, which

is not necessari ly a solution, constitutes a state'

Iterative-repair search operates by moving from one

state to another and attempting to find a state where

all constraints are satisfied' This move oPerator and

the state evaluation function are two important com-

ponents of an iterative-repair search' The move is

usually accomplished by changing the value of one

variable (thus the name local search)' However' a

technique operating as a multiagent search allows

u,ry no-b.r of variables to change their values' The

evaluation function measures the cost or quality of

a given state, usually in terms of the number of bro-

ke-n constraints. Heuristics, such as the min-conflict

heuristic, are used to choose among the states reach-

able from the current state (neighboring states)'

The performance of iterative-repair techniques

depends heavily on their ability to explore the so-

luiion space. The performance is undermined by the

existenie in this space of local optima, plateaux' and

other singularitiei caused by the nonconvexity of the

constraints. Heuristics are used to avoid falling

into these traps or to recover from them' One heuris-

tic, a breakolt strategy, consists of increasing the

weight of the broken constraints unti l  a state is

...cied that satisfies these constraints' Thbu search

maintains a list of states to which search cannot move

back. Other heuristics use stochastic noise such as

random walk and simulated annealing'

Blenilin g S oluti o n Te chni que s

Constraint propagation has been successfully com-

bined with tacktrack search to yield effective look-

ahead strategies such as forward checking' Combining

constraint propagation with iterative-repair strate-

gies is less common' On the other hand, randomiza-

i ion, which has been for a long t ime uti l ized in

local search, is now being successfully applied in back-

track search.

Research Directions
The use of constraint processing techniques is wide-

spread due to the success of the constraint pro-

giamming paradigm and the increase of commercial

iools and industriil achievements' While research on

the above topics remains active, investigations are also

investedinthefollowingdirections:userinteraction;
discovery and exploitation of symmetry relations;

propagation algorithms for high-arity constraints

I
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and for continuous domains; preference modeling
and processing; distributed search techniques; em-
pirical assessment of problem dfficulty; and statis-
tical evaluation and comparison of algorithms.

Berthe Y. Choueiry

See also Artificial Intelligence; N-grams
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C(lNUERGING
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Human-computer interaction (HCI) is a mult i-
disciplinary field arising chiefly in the convergence
of computer science, electrical engineering, infor-
mation technology, and cognitive science or psy-
chology. In the future it is likely to be influenced
by broader convergences currently in progress, reach-
ing out as far as biotechnology and nanotechnology.
Together, these combined fields can take HCI to new
levels where it will unobtrusively but profoundly en-
hance human capabilities to perceive, to think, and
to act with maximum effectiveness.

The Basis for Conuergence
During the twentieth century a number of interdis-
cipl inary f ields emerged, bridging the gaps be-
tween separate traditionally defined sciences. Notable
examples are astrophysics (astronomy plus physics),
biochemistry (biology plus chemistry), and cogni-
tive science (psychology plus neurology plus com-
puter science). Many scientists and engineers believe
that the twenty-first century will be marked by a
broader unification of all of the sciences, permitting
a vast array of practical breakthroughs-notably
in the convergence of nanotechnology, biotechnology,
information technolo gy, and co gnitive technolo gy-
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