
An Empirical Study of a New Restart Strategy for
Randomized Backtrack Search

Venkata Praveen Guddeti and Berthe Y. Choueiry

Constraint Systems Laboratory
Computer Science & Engineering
University of Nebraska-Lincoln

Email:{vguddeti, choueiry}@cse.unl.edu

Abstract. We propose an improved restart strategy for randomized backtrack
search and compare its performance to other search mechanisms in the context of
solving a tight real-world resource allocation problem. The restart strategy pro-
posed by Gomes et al. [1] requires the specification of a cutoff value determined
from an overall profile of the cost of search for solving the problem. When no
such profile is known, the cutoff value is chosen by trial-and-error. Walsh pro-
posed the strategy Randomization and Geometric Restart (RGR), which does not
rely on a cost profile but determines the cutoff value as a function of a constant pa-
rameter and the number of variables in the problem [2]. Unlike these strategies,
which have fixed restart schedules, our technique (RDGR) dynamically adapts
the value of the cutoff parameter to the results of the searchprocess. We empir-
ically evaluate the performance of RDGR by comparing it against a number of
heuristic and stochastic search techniques, including RGR, using the cumulative
distribution of the solutions. We compare the performance of RGR and RDGR
over different run-time durations, different values of thecutoff, and for differ-
ent problem types (i.e., a real-world resource allocation problem and randomly-
generated binary constraint satisfaction problems). We show that distinguishing
between solvable and over-constrained problem instances in our real-world case-
study yields new insights on the relative performance of thesearch techniques
tested. We propose to use this characterization as a basis for building new strate-
gies of cooperative, hybrid search.

1 Introduction

We apply Constraint Processing techniques to model and solve the assignment of Grad-
uate Teaching Assistants (GTA) to courses in our department. The idea of this applica-
tion was first found on the web-page of Rina Dechter. This is a critical and arduous task
that the department’s administration has to drudge throughevery semester. By focusing
our investigations on this particular real-world application, we have been able to iden-
tify and compare the advantages and shortcomings of the various search strategies we
have implemented to solve this problem. Such an insight is unlikely to be gained from
testing toy problems, and surely difficult from testing random problems. We believe that
the identified behaviors apply beyond our application and are currently working on test-
ing this hypothesis. The contributions of this paper are as follows: (1) The development



of a new dynamic restart strategy for randomized backtrack search, and (2) an empir-
ical evaluation of the performance of this new strategy and acomparison with other
heuristic and stochastic search techniques on a real-worldproblem and on randomly
generated binary CSPs.

This paper is structured as follows. Section 2 describes theGTA assignment prob-
lem and our implementations of a backtrack search, a local search, and a multi-agent
search technique for solving it. Section 3 introduces our new proposed dynamic restart
strategy for randomized backtrack search and our implementation of Walsh’s restart
strategy [2]. Section 4 presents our experiments and our observations. Finally, Section 5
concludes the paper and provides directions for future research.

2 GTA Assignment Problem

Given a set of graduate teaching assistants (GTAs), a set of courses, and a set of con-
straints that specify allowable assignments of GTAs to courses, the goal is to find a con-
sistent and satisfactory assignment [3–6]. Hard constraints (e.g., a GTA’s competence,
availability, and employment capacity) must be met, and GTA’s preferences for courses
(expressed on a scale from 0 to 5) must be maximized. Typically, every semester, the de-
partment has about 70 different academic tasks and can hire between 25 and 40 GTAs.
Instances of this problem, collected since Spring 2001, areconsistently tight and of-
ten over-constrained. However,this is not known a priori. The objective is to ensure
GTA support to as many courses as possible by finding amaximal consistent partial-
assignment. Because the hard constraints cannot be violated, the problem cannot be
modeled as a MAX-CSP [7]. We provide a constraint model of this problem by repre-
senting the courses as variables, the GTAs as domain values,and the assignment rules
as a number of unary, binary, and non-binary constraints. Wedefine the problem as the
task of finding the longest assignment, as a primary criterion, and maximizing GTAs’
preferences, as a secondary criterion. (We model the latteras the value of the geometric
mean of GTAs’ preferences in an assignment.) We implementeda number of search
strategies for solving this problem, which we summarize below. These are a heuristic
backtrack search (BT) with various ordering heuristics, a greedy local search (LS), a
multi-agent-based search (ERA), and a randomized backtrack search with two restart
strategies (RGR and RDGR). All strategies implement the above two optimization crite-
ria, except ERA, which models the GTA assignment problem as asatisfaction problem.
We tested these search techniques on the real-world data-sets shown in Table 1. Each
course has a load that indicates the weight of the course. Forexample, a value of 0.5
means this course needs one-half of a GTA. Thetotal loadof a semester is the cumula-
tive load of the individual courses. Each GTA has a capacity factor which indicates the
maximum course weight he/she can be assigned during the semester. The sum of the
capacities of all GTAs represents thetotal capacity.

Below, we review the search techniques to which we compare our new dynamic
restart strategy. These search techniques were implemented separately by students,
competing to produce the best results.



Data set Spring2001bFall2001bFall2002Fall2002-NPSpring2003Spring2003-NP
Reference 1 2 3 4 5 6

Solvable? × √ × × √ √

#Courses (#variables) 69 65 31 59 54 64
#GTAs (domain size) 26 34 28 28 34 34
Total capacity 26 30 11.5 27 27.5 31
Total load 29.6 29.3 13 29.5 27.4 30.2
Ratio = TotalCapacity

TotalLoad
0.88 1.02 0.88 0.91 1.00 1.02

Table 1.Characteristics of the data sets.

2.1 Heuristic backtrack search

Our heuristic backtrack (BT) search is a depth-first search with forward checking [8].
Because the problem may be over-constrained, we modified thebacktrack mechanism
to allow null assignments and proceed toward the longest solution in a branch-and-
bound manner (i.e., backtracking is not performed when a domain is wiped-out as long
as there are future variables with no empty domains). Our implementation is described
in detail in [4]. Note that adding dummy values to deal with over-constrained instances
is a bad choice in our context as it increases the branching factor (which is already too
large) and consequently the worsens the thrashing behavior.

We have also implemented several variable and value ordering heuristics to im-
prove the performance of search. For variable ordering we implemented two heuristics
for choosing the most constrained variable first: least domain and ratio domain size to
degree. We applied these heuristics both statically (i.e.,sequence of variables is deter-
mined before search and not modified thereafter) and dynamically (i.e., the next variable
is chosen after each instantiation). For value ordering, wetested 3 different heuristics:
random ordering, and sorted by preference and by occurrencefrequency in the domains.
The combination of these heuristics yielded 12 ordering strategies. Our experiments
showed that dynamic variable ordering is consistently superior to static ordering, but
that the influence of the other factors is not significant in the context of our application.

Furthermore, all these strategies exhibited a serious vulnerability to thrashing, which
seriously undermined their ability to explore wider areas of the search space. Indeed, al-
though BT is theoretically sound and complete,the size of the search space makes such
guarantees meaningless in practice. Figure 1 illustrates thrashing for a problem with
69 variables and 26 values. Here, the percentage isnumber of variables−shallowest level

number of variables .
Indeed, the shallowest level of backtrack achieved after 24hours (26%) is not signifi-
cantly better than that reached after 1 minute (20%) of search, never revising the initial
assignment of 74% of the variables. Figure 2 shows, for each data set, the number of
variables, the longest solution (max depth), and the shallowest BT levels in terms of the
level and the percentage of backtracking in the search tree attained after 5 minutes and
6 hours.
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Fig. 1. BT search thrashing in large search
spaces.

Data # BT running for..
set Vars 5 min 6 hours

Max Shallowest Max Shallowest
depthlevel % depthlevel %

1 69 57 53 23% 57 51 26 %
2 65 63 55 15% 63 54 16 %
3 31 28 13 58% 28 3 90 %
4 59 49 48 18% 50 45 23 %
5 54 52 44 18% 54 41 24 %
6 64 62 54 15% 62 47 26 %

Fig. 2. BT search thrashing.

2.2 Local search

Zou and Choueiry designed and implemented a greedy, local search (LS) technique to
solve the GTA Assignment Problem [9–11]. It is a hill-climbing search using the min-
conflict heuristic for value selection [12]. It begins with acomplete, random assignment
(not necessarily consistent) and tries to improve it by changing inconsistent assignments
in order to reduce the number of constraint violations. The effects of consistent assign-
ments are propagated over the domains of the variables with inconsistent assignments.
This design decision effectively handles non-binary constraints. Also, the local search
is greedy in the sense that consistent assignments are not undone. Moreover, a random-
walk strategy is applied to escape from local optima [13]. With a probability(1 − p),
the value of a variable is chosen using the min-conflict heuristic, and with probability
p this value is chosen randomly. Following the indications of[13], p = 0.02 is used.
Finally, random restarts are used to break out of local optima.

2.3 ERA model

Zou and Choueiry also implemented a multi-agent-based search for solving the GTA
Assignment Problem [9–11]. Liu et al. [14] proposed the ERA algorithm (Environ-
ment, Reactive rules, and Agents), a multi-agent-based search for solving CSPs. Each
agent represents a variable. The positions of an agent in theenvironmentE correspond
to the values in the domain of the variable. First, ERA placesthe agents randomly in
their allowed positions in the environment, then it considers each agent in sequence.
For a given agent, it computes the constraint violations of each agent’s position. An
agent moves to occupy a position (zero position ) that does not break any of the
constraints that apply to it. If the agent is already in azero position , no change
is made. Otherwise, the agent chooses a position to move to, the choice being deter-
mined stochastically by the reactive rules (R). The agents keep moving until they all
reach azero position (i.e., a full, consistent solution) or a certain time periodhas
elapsed. After the last iteration, only the CSP variable corresponding to agents inzero
position are effectively instantiated. The remaining ones remain unassigned (i.e.,
unbounded). This algorithm acts as an ‘extremely’ decentralized local search, where
any agent can move to any position, likelyforcing other agents to seek other positions.



This extreme mobility of agents in the environment is the reason for ERA’s unique im-
munity to local optima, as uncovered by the experiments in [9–11]. It is indeed the
only search technique to solve instances that remain unsolved by any other technique
we tested. Zou and Choueiry also uncovered the weakness of ERA on over-constrained
problems, where a deadlock phenomenon undermines its stability resulting in particu-
larly short solutions. However, it has been shown that this phenomenon can be advan-
tageously used to isolate, identify, and represent conflicts in a compact manner.

3 Randomized BT search with restarts

Unlike ERA and local search, general backtrack (BT) search has the nice property of
being complete and sound. However, the performance of heuristic BT proved to be
unpredictable in practice and seriously undermined by thrashing (i.e., searching un-
promising parts of the search space). Thrashing can be explained by incorrect heuristic
choices made early in the search process, and forces BT search to explore large ‘barren’
parts of the search tree. As the problem size increases, the effects of thrashing become
more important, and the performance of search dramaticallydecreases. Another ma-
jor problem is the high degree of unpredictability in the run-time of BT over a set of
problem instances, even within the same problem type. Gomeset al. [1] noticed that
this run-time can be often modeled by a heavy-tailed distribution. They proposed to use
randomization and restart strategies to overcome this shortcoming of systematic search.
First we review the main concepts, then we describe the two strategies that we tested.

Gomes et al. [1] demonstrated that randomization of heuristic choices combined
with restart mechanisms is effective in overcoming the effects of thrashing and in reduc-
ing the total execution time of systematic BT search. Thrashing in BT search indicates
that search is stuck exploring an unpromising part of the search space, and thus inca-
pable of improving the quality of the current solution. It becomes apparent that there is
a need to interrupt search and to explore other areas of the search space. It is important
to restart search from a different portion of the search space; otherwise it will end up
traversing the same paths. Randomization of branching during search is used to this end.
Randomness can be introduced in the variable and/or value ordering heuristics, either
for tie-breaking or for variable and/or value selection. After choosing a randomization
method, the algorithm designer must decide on the type of restart mechanism. This
restart mechanism determines when to abandon a particular run and restart the search.
Here the tradeoff is that reducing the cutoff time reduces the probability of reaching a
solution at a particular run. Several restart strategies have been proposed with different
cutoff schedules. Some of the better known ones are the fixed-cutoff strategy and Luby
et al.’s universal strategy [15], the randomization and rapid restart (RRR) of Gomes et
al. [1], and the randomization and geometric restarts (RGR)of Walsh [2]. Among the
above listed restart strategies, RRR and RGR have been studied and empirically tested
in the context of CSPs. All of these restart strategies are static in nature, i.e. the cutoff
value for each restart is independent of the progress made during search. Some restart
strategies (e.g., fixed-cutoff strategy of [15] and RRR [1])employ an optimal cutoff
value that is fixed for all the restarts of a particular problem instance.



However, the estimation of the optimal cutoff value requires a priori knowledge of
the cost distribution of that problem instance, which is notknown in most setting and
must be determined by trial-and-error. This is clearly not practical for real-world appli-
cations. There are other restart strategies that do not needany a priori knowledge (e.g.,
Luby et al.’s universal strategy [15] and Walsh’s RGR [2]). They utilize the idea of an
increasing cutoff value in order to ensure the completenessof the restart strategy. How-
ever, if these restart strategies do not find a solution in theinitial few restarts, then the
increasing cutoff value leads to fewer restarts, which may yield thrashing and dimin-
ishes the benefits of the restart strategy. We propose a restart strategy that dynamically
adapts the cutoff value for each restart based on the performance of previous restarts.
We do this at the expense of completeness. We also implemented RGR and empirically
compared it with our dynamic restart strategy.

3.1 Randomization and Geometric Restarts

Walsh proposed the Randomization and Geometric Restarts (RGR) strategy to automate
the choice of the cutoff value [2]. According to RGR, search proceeds until it reaches
a cutoff value for the number of nodes visited. The cutoff value for each restart is a
constant factor,r, larger than the previous run. The initial cutoff is equal tothe number
of variablesn. This fixes the cutoff value of theith restart atn.ri nodes. The geometri-
cally increasing cutoff value ensures completeness with the hope of solving the problem
before the cutoff value increases to a large value. We studied various values ofr and
report them in this paper. We combined this restart strategywith the backtrack search
of Section 2.1, randomizing the selection of variable-value pairs.

3.2 Randomization and Dynamic Geometric Restarts

We now introduce a simple but effective improvement to RGR. Static restart strategies
suffer from the problem of increasing cutoff values after each restart. While this ensures
completeness of the search, it results in fewer restarts, thus increasing the likelihood of
thrashing and diminishing the probability of finding a solution. Our proposed strategy,
Randomization andDynamicGeometric Restarts (RDGR), aims to attenuate this ef-
fect. It operates by not increasing the cutoff value for the following restart whenever
the quality of the current best solution is not improved upon. When the current restart
improves on the current best solution, then the cutoff valueis increased geometrically,
similar to RGR. Because the cutoff value does not necessarily increase, completeness
is no longer guaranteed. This situation is acceptable in application domains (like ours)
with large problem size where completeness is, anyway, infeasible in practice. Smaller
cutoff values result in a larger number of restarts taking place in RDGR than RGR,
which increases the probability of finding a solution. All other implementation details
are similar to RGR.

Let Ci be cutoff value for theith restart andr be the ratio used to increase the cutoff
value. In RGR the cutoff value is updated according to the equation:Ci+1 = r.Ci. We
use the following equation in RDGR:

Ci+1 =

{

r.Ci when the solution has improved at theith restart
Ci otherwise

(1)



In RGR, the cutoff value for each restart is determinedindependentlyof how search
performed at the previous step. However, this is not the casefor RDGR. Each time
search begins with a different random seed, it traverses different search paths. Some
paths may be more fruitful than others. RGR and RDGR follow the same cutoff sched-
ules for search paths that improve solutions. When this is not the case, RGR cutoff
values keep on increasing, thus making RGR more of a randomized BT search than a
randomized BT search with restarts. In contrast, RDGR keepscutoff at smaller values.
This explains the dynamic nature of RDGR. For problems that are not tight, solutions
are found within a few restarts. In such cases, RGR and RDGR exhibit similar behav-
iors. For tight and over-constrained problems, RDGR seems to dominate RGR as we
show in our experiments (Section 4).

4 Experiments and results

We tested and compared the above listed 5 search strategies,namely: BT (Section 2.1),
LS (Section 2.2), ERA (Section 2.3), RGR (Section 3.1), and RDGR (Section 3.2). BT
is deterministic and the other 4 search techniques (i.e., LS, ERA, RGR, and RDGR)
are stochastic. In the terminology introduced by Hoos and Stützle in [16], these are
optimization Las Vegas algorithms, RGR is probabilistically approximately complete
(PAC), and LS, ERA, and RDGR are essentially incomplete. We tested these search
techniques on the 6 real-world data-sets of the GTA Assignment Problem shown in
Table 1. Three of the data sets (1, 3, and 4) are over-constrained, and the remaining
ones (2, 5, and 6) are tight but solvable. Table 2 shows the performance of BT on data
set 1 for various run times.

Data set 1(69 variables, over-constrained)
CPU run time 30 sec 5 min 30 min 1 hour 6 hours 24 hours

Shallowest BT level 54 53 52 52 51 51
Longest solution 57 57 57 57 57 57
Geometric mean of 2.15 2.17 2.17 2.21 2.27 2.27
preference values
# Backtracks 1835 47951 261536 532787 3274767 13070031
# Nodes visited 3526 89788 486462 989136 6059638 24146133
# Constraint checks 84961180316839736181372685535844076902156991197586996547613

Table 2.Performance of BT for various CPU run-times.

We repeated our experiments 500 times for all stochastic search procedures. Nat-
urally, a single run is sufficient for BT because it is deterministic. We found that the
average run-time for all stochastic algorithms stabilizesafter 300 runs on all our data,
as shown in Figure 3 for data set 1, which justifies our decision. We experimented with
different run-times for each run of each algorithm. We also experimented with different
ratios used to increase the cutoff value in RGR and RDGR. We compare the perfor-
mance of the algorithms using the following criteria:
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1. Solution quality distributions(SQD) taking as reference the longest known solution
for each data set, as recommended by Hoos and Stützle in [16]. SQD’s are cumu-
lative distributions of the solution quality, similar to the cumulative distributions
of run-time in run-time distributions. The horizontal axesrepresents in percent the
relative deviation of the solution sizes from the longest known solutionsopt, com-

puted as(sopt−s)100
sopt

. Thus, the point 0% on thex-axis denotes the longest solution
and, the point 20% denotes a solution that is 20% shorter thatthe longest solution.

2. Descriptive statisticsof all the solutions found, for all search techniques.
3. 95% confidence intervalof the mean improvement using 25 mean sample points,

each sub-sample being of size 20. The confidence interval wascomputed using
a t-distribution. The improvements of RDGR with respect to an algorithm A are
computed as:

Improvement(X) =
X(A) − X(RDGR)

X(A)
(2)

whereX is deviation from the best known solution in percentage. Table 3 reports
the improvements of RDGR over RGR and ERA.

We report the results for the following data sets (the same qualitative observations
hold across all data sets):

– Data set 1 as a representative of an over-constrained problem. Results are shown in
Figures 4, 5, 6, and 7, and Table 4.

– Data set 5 as a representative of a tight but solvable problem. Results are shown in
Figures 8, 9, 10, and 11, and Table 5.

We also evaluated all the search techniques on randomly generated problems, gen-
erated with the model B type generator of of [17]. We generated three types of randomly
generated problems, each containing 100 instances and eachinstance run for 3 minutes:

– The first type of randomly generated problems (R1) areunder-constrainedbinary
CSPs with 40 variables, uniform domain size of 20 values, 0.5constraint proba-



Data set Improvements over RGR Improvements over ERA
LL Average UL LL Average UL

1 1.83 2.23 2.63 45.47 46.26 47.06
2 1.19 1.48 1.78 -5.64 -5.17 -4.69
3 2.61 2.94 3.27 30.05 32.37 43.69
4 1.03 1.35 1.66 24.71 26.70 28.70
5 0.61 0.84 1.08 -3.54 -3.38 -3.23
6 0.86 1.15 1.45 -2.47 -1.91 -1.36

LL: lower limit of the confidence interval.
UL: upper limit of the confidence interval.

Table 3. Improvements of RDGR with 95% confidence level
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Fig. 5. RGR and RDGR over different run-times
for data set 1 (500 runs).

bility, and 0.2 constraint tightness. We give their resultsin Figures 12, 13 and 14.

– The second type of randomly generated problems (R2) areover-constrainedbinary
CSPs with 40 variables, uniform domain size of 20 values, 0.5constraint probabil-
ity, and 0.5 constraint tightness. We give their results in Figures 15, 16, 17, and 18.

– The third type of randomly generated problems are from thephase transitionarea.
These are binary CSPs with 25 variables, uniform domain sizeof 15 values, 0.5
constraint probability, and 0.36 constraint tightness. They were split into two sets,
each of 100 instances. The first set (R3) are solvable, while the second set (R4) are
not solvable. We give their results in Figures 19, 20, 21 (RDGR), 22 (RDGR), 23
(RGR), and 24 (RGR).

Below we report our observations:

Improvement of RDGR over RGR: Figures 4, 5, 8, 9, 12, 15, 19, and 20 show that
RDGR clearly improves upon RGR. In Figures 4 and 8, RDGR has greater proba-
bility of finding solutions up to 10% relative solution size.After that value, RDGR



Data set 1(69 variables, over-constrained)

Search Mean MedianMode Standard dev.Minimum Maximum

BT 57 57 57 0 57 57
LS 47.12 48 49 4.44 30 55
ERA 30.99 31 32 4.37 18 45
RDGR 59.66 60 60 0.77 58 62
RGR 58.27 58 58 2.83 23 62

Table 4.Statistics of solution size (500 runs, 10 min each).
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cutoff value (500 runs, 5 min each).

and RGR have similar performances. In Figures 5 and 9, RDGR consistently per-
forms better than RGR over different run-times. The positive improvements in Ta-
ble 3 show that RDGR performs better than RGR over all the GTA data sets.

Best results on the ratio used to increase the cutoff:In accordance with [2], Figures 6,
10, 13, 17, 23, and 24 show that a value ofr=1.1 is the best among the values tested
for RGR. While, for RGR, this optimal ratio does not change with the problem
type (i.e., GTA vs. random problem), it does for RDGR. For theGTA problem, it is
r=1.1 (Figures 7 and 11). For randomly generated problems, itis r=2 (Figures 14,
18, 21, and 22).

Improvement of RDGR over BT: Tables 4 and 5 show that the maximum value of the
solution sizes produced by RDGR is clearly greater than thatof the solution sizes
produced by BT. However, due to its stochastic nature, RDGR suffers from high
instability in its solution quality. On randomly generatedproblems also, RDGR
outperforms BT (Figures 12, 15, 19, and 20).

Superiority of RDGR over LS: The performance of RDGR is clearly superior to that
of LS (see Tables 4 and 5, and Figures 4, 8, 12, 16, 19, and 20). Although this
solution quality is highly variable for both RDGR and LS, thelow mean value of
the solution quality of LS ensures that RDGR remains superior to LS.
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Data set 5(54 variables, tight but solvable)

SearchMeanMedianMode Standard dev.Minimum Maximum

BT 52 52 52 0 52 52
LS 42.88 44 46 3.94 29 50
ERA 53.99 54 54 0.04 53 54
RDGR 52.17 52 52 0.78 50 54
RGR 51.70 52 52 1.04 49 54

Table 5.Statistics of solution size (500 runs, 10 min each).

Superiority of RDGR over ERA on over-constrained problems: On over-constrained
problems (Figures 4, 15, and 16 and Table 3), the deadlock phenomenon prevents
ERA from finding solutions of quality comparable to those found by the other tech-
niques [9–11]. BT, LS, RDGR, and RGR do not exhibit such a dichotomy of be-
havior between over-constrained cases and solvable instances.

Performance of ERA: On solvable problem instances (Figures 8 and 12), ERA domi-
nates all techniques. It is the only algorithm that finds complete solutions for nearly
all the runs. ERA completely dominates LS. However, on over-constrained prob-
lem instances (Figures 4 and 16) RDGR, RGR, BT and LS are superior to ERA
due to the deadlock phenomenon. At the phase transition (Figures 19 and 20), the
behavior of ERA is independent of the solvability of the problem. ERA performs
only better than LS, while RDGR, RGR and BT perform better than ERA. This dif-
ference in performance of ERA may have to do with the structure of the randomly
generated problems and the GTA problem. More tests are needed to understand this
phenomenon.

RDGR is more stable than RGR: Due to their stochastic nature, RDGR and RGR
techniques show a high instability in their solution quality. However, the standard
deviation column of Tables 4 and 5 show that RDGR is relatively more stable than
RGR.
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cutoff value (500 runs, 5 min each).
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Fig. 11.SQDs of RDGR with different ratios for
cutoff value (500 runs, 5 min each).

Sensitivity of LS to local optima: LS sensitivity to local optima makes it particularly
unattractive. Even BT outperforms LS.

Larger number of restarts in RDGR: On data set 1, the average number of restarts
is 74.5 for RDGR and 16.7 of RGR. On data set 5, the average number of restarts
is 56.9 for RDGR and 22.4 for RGR. This confirms our expectations stated in Sec-
tion 3.2 that RDGR performs more restarts than RGR.

The following three statements, where� denotes an algorithm dominance over an-
other, summarize the behavior of the 5 search strategies, also shown in Table 6:

– On solvable instances: ERA� RDGR� RGR� BT � LS
– On over-constrained instances: RDGR� RGR� BT � LS� ERA
– At the phase transition: RDGR� RGR� BT � ERA � LS

5 Conclusions and future work

By addressing a real-world application, we are able to identify, characterize, and com-
pare the behavior of various search techniques. While BT is stable, it suffers from
thrashing. LS is vulnerable to local optima. ERA shows difference in performance with
different problem types. ERA has an amazing ability to solveunder-constrained prob-
lems. However, ERA’s performance degrades on over-constrained problems due to the
deadlock phenomenon. This same deadlock phenomenon may be affecting ERA at the
phase transition. Restart strategies effectively preventthrashing, but their solution qual-
ity is highly variable. RGR operates by increasing cutoff values at every restart, which
makes is more increasingly vulnerable thrashing. RDGR attenuates this effect by mak-
ing the cutoff value depend upon the result obtained at the previous restart, thus increas-
ing the number of restarts in comparison to RGR. Consequently, RDGR exhibits a more
stable behavior than RGR while yielding at least as good solutions. In the future, we
plan to study the following directions:
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Fig. 12.SQDs of data set R1 (100 instances, 3 min each).

1. Validate our findings on other real-world case-studies. And,
2. Design new search hybrids where a solution from a given technique such as ERA

is fed as a seed to another one such as heuristic backtrack search.
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(100 instances, 3 min each).
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Fig. 19.SQD for the data set R3 (100 instances,
3 min each).
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Fig. 21.SQDs of RDGR with different ratios for
cutoff value (100 instances, 3 min each).
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Fig. 22.SQDs of RDGR with different ratios for
cutoff value (100 instances, 3 min each).
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Fig. 23. SQDs of RGR with different ratios for
cutoff value (100 instances, 3 min each).
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Fig. 24. SQDs of RGR with different ratios for
cutoff value (100 instances, 3 min each).



Characteristics

General: Stochastic and incomplete
ERA Tight but solvable problems: Immune to local optima

Over-constrained problems:Deadlock causes instability and yields shorter solutions

General: Stochastic, incomplete, and quickly stabilizes
LS Tight but solvable problems:Liable to local optima, and fails to solve tight

CSPs even with random-walk and restart strategies
Over-constrained problems:Finds longer solutions than ERA

General: Stochastic, incomplete, immune to thrashing,
produces longer solutions than BT, immune to deadlock,

RDGRreliable on unknown instances, and
immune to local optima, but less than ERA

General: Stochastic, Approximately complete,
RGR less immune to thrashing than RDGR, and

yields shorter solutions than RDGR in general.

General: Systematic, complete (theoretically, rarely in practice),
BT liable to thrashing, yields shorter solutions than RDGR andRGR,

stable behavior, and more stable solutions than stochasticmethods in general

Table 6.Comparing the behaviors of search strategies in our context.


