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Abstract. We propose an improved restart strategy for randomizedtizatk
search and compare its performance to other search mestwinishe context of
solving a tight real-world resource allocation problemeThstart strategy pro-
posed by Gomes et al. [1] requires the specification of a tuaifie determined
from an overall profile of the cost of search for solving thelgem. When no
such profile is known, the cutoff value is chosen by trial-anr. Walsh pro-
posed the strategy Randomization and Geometric RestaR{R@ich does not
rely on a cost profile but determines the cutoff value as atfonof a constant pa-
rameter and the number of variables in the problem [2]. Unifiese strategies,
which have fixed restart schedules, our technique (RDGRamhjcally adapts
the value of the cutoff parameter to the results of the searobess. We empir-
ically evaluate the performance of RDGR by comparing it asad number of
heuristic and stochastic search techniques, including RGiRg the cumulative
distribution of the solutions. We compare the performanftBR@R and RDGR
over different run-time durations, different values of thaoff, and for differ-
ent problem types (i.e., a real-world resource allocatia@blem and randomly-
generated binary constraint satisfaction problems). Véavshat distinguishing
between solvable and over-constrained problem instanaagrireal-world case-
study yields new insights on the relative performance ofsarch techniques
tested. We propose to use this characterization as a basisifding new strate-
gies of cooperative, hybrid search.

1 Introduction

We apply Constraint Processing techniques to model ané sioévassignment of Grad-
uate Teaching Assistants (GTA) to courses in our departriidetidea of this applica-
tion was first found on the web-page of Rina Dechter. This isteal and arduous task
that the department’s administration has to drudge threnghy semester. By focusing
our investigations on this particular real-world applioat we have been able to iden-
tify and compare the advantages and shortcomings of theussearch strategies we
have implemented to solve this problem. Such an insightlikely to be gained from
testing toy problems, and surely difficult from testing ramproblems. We believe that
the identified behaviors apply beyond our application aeccarrently working on test-
ing this hypothesis. The contributions of this paper aremlsews: (1) The development



of a new dynamic restart strategy for randomized backtraekch, and (2) an empir-
ical evaluation of the performance of this new strategy amsraparison with other
heuristic and stochastic search techniques on a real-wooldlem and on randomly
generated binary CSPs.

This paper is structured as follows. Section 2 describe&the assignment prob-
lem and our implementations of a backtrack search, a loeatbeand a multi-agent
search technique for solving it. Section 3 introduces ow p@posed dynamic restart
strategy for randomized backtrack search and our implestientof Walsh’s restart
strategy [2]. Section 4 presents our experiments and owredtons. Finally, Section 5
concludes the paper and provides directions for futurearebe

2 GTA Assignment Problem

Given a set of graduate teaching assistants (GTAs), a setun$es, and a set of con-
straints that specify allowable assignments of GTASs to sesirthe goal is to find a con-
sistent and satisfactory assignment [3—6]. Hard condgrééng., a GTA's competence,
availability, and employment capacity) must be met, and '&pleferences for courses
(expressed on a scale from 0 to 5) must be maximized. Typjesiery semester, the de-
partment has about 70 different academic tasks and candtineebn 25 and 40 GTAs.
Instances of this problem, collected since Spring 2001 cansistently tight and of-
ten over-constrained. Howevehjs is not known a prioti The objective is to ensure
GTA support to as many courses as possible by findingaaimal consistent partial-
assignmentBecause the hard constraints cannot be violated, the ggrobannot be
modeled as a MAX-CSP [7]. We provide a constraint model of hioblem by repre-
senting the courses as variables, the GTAs as domain valnéshe assignment rules
as a number of unary, binary, and non-binary constraintsd&fiae the problem as the
task of finding the longest assignment, as a primary criteidmd maximizing GTAS’
preferences, as a secondary criterion. (We model the kttre value of the geometric
mean of GTAs’ preferences in an assignment.) We implemeatedmber of search
strategies for solving this problem, which we summarizeWwelThese are a heuristic
backtrack search (BT) with various ordering heuristicsyeedy local search (LS), a
multi-agent-based search (ERA), and a randomized ba&ksearch with two restart
strategies (RGR and RDGR). All strategies implement the@bmo optimization crite-
ria, except ERA, which models the GTA assignment problemsagiafaction problem.
We tested these search techniques on the real-world datafsmvn in Table 1. Each
course has a load that indicates the weight of the courseexample, a value of 0.5
means this course needs one-half of a GTA. ithal load of a semester is the cumula-
tive load of the individual courses. Each GTA has a capaeitydr which indicates the
maximum course weight he/she can be assigned during thessamEehe sum of the
capacities of all GTAs represents ttogal capacity

Below, we review the search techniques to which we compareew dynamic

restart strategy. These search techniques were implecthepfzarately by students,
competing to produce the best results.



Data set Spring2001hbFall2001hFall2002Fall2002-NRSpring2003Spring2003-NP
Reference 1 2 3 4 5 6
Solvable? X 4 X X Vv Vv
#Courses (#variables 69 65 31 59 54 64
#GTAs (domain size) 26 34 28 28 34 34

Total capacity 26 30 115 27 275 31

Total load 29.6 29.3 13 29.5 27.4 30.2
Ratio = TofalCapacity 0.88 1.02 | 0.88 0.91 1.00 1.02

Table 1.Characteristics of the data sets.

2.1 Heuristic backtrack search

Our heuristic backtrack (BT) search is a depth-first searith ferward checking [8].
Because the problem may be over-constrained, we modifieblatle¢rack mechanism
to allow null assignments and proceed toward the longesitisal in a branch-and-
bound manner (i.e., backtracking is not performed when aaiioia wiped-out as long
as there are future variables with no empty domains). Ouldmentation is described
in detail in [4]. Note that adding dummy values to deal witleeeonstrained instances
is a bad choice in our context as it increases the branchatgrf@vhich is already too
large) and consequently the worsens the thrashing behavior

We have also implemented several variable and value oglémuristics to im-
prove the performance of search. For variable ordering w#eémented two heuristics
for choosing the most constrained variable first: least doraad ratio domain size to
degree. We applied these heuristics both statically Gezjuence of variables is deter-
mined before search and not modified thereafter) and dyradiy(ce., the next variable
is chosen after each instantiation). For value orderingtested 3 different heuristics:
random ordering, and sorted by preference and by occurfesmpgency in the domains.
The combination of these heuristics yielded 12 orderingtstiies. Our experiments
showed that dynamic variable ordering is consistently sapéo static ordering, but
that the influence of the other factors is not significant em¢bntext of our application.

Furthermore, all these strategies exhibited a seriousvahility to thrashing, which
seriously undermined their ability to explore wider aretthe search space. Indeed, al-
though BT is theoretically sound and complétes size of the search space makes such
guarantees meaningless in practi¢égure 1 illustrates thrashing for a problem with
69 variables and 26 values. Here, the percentag&i®er C;fu‘gg‘e‘“*rbﬁswiﬁ‘jggzvc“ level |
Indeed, the shallowest level of backtrack achieved aftend@4s (26%) is not 5|gn|f|-
cantly better than that reached after 1 minute (20%) of seaever revising the initial
assignment of 74% of the variables. Figure 2 shows, for eath skt, the number of
variables, the longest solution (max depth), and the slvabBT levels in terms of the
level and the percentage of backtracking in the search ttei@ed after 5 minutes and

6 hours.




Data| # BT running for..

Shallowest level o set |Vars 5 min 6 hours
reached by BT after.. "E i Max |Shallowest Max [Shallowest
2o depthlevel % ||depthlevel %
E 3 1|69 57 |53 23%| 57 | 51 26 %
24 hr: 51 (26%)—», z|g 2 | 65| 63 |55 15%| 63 | 54 16 %
1 min: ggp(t%@g 3 [ 31| 28|13 58%|| 28 | 3 90%
’ Y 4 | 59| 49 | 48 18%|| 50 | 45 23 %
5 | 54| 52|44 18%| 54 | 41 24 %
Fig. 1. BT search thrashing in large search 6 |64 62|54 15%] 62 | 47 26%
spaces. Fig. 2. BT search thrashing.

2.2 Local search

Zou and Choueiry designed and implemented a greedy, loaedls€LS) technique to
solve the GTA Assignment Problem [9-11]. It is a hill-climbisearch using the min-
conflict heuristic for value selection [12]. It begins witlk@mplete, random assignment
(not necessarily consistent) and tries to improve it by givaminconsistent assignments
in order to reduce the number of constraint violations. Tifescés of consistent assign-
ments are propagated over the domains of the variables mgtmsistent assignments.
This design decision effectively handles non-binary caists. Also, the local search
is greedy in the sense that consistent assignments are dohenMoreover, a random-
walk strategy is applied to escape from local optima [13]thvéi probability(1 — p),
the value of a variable is chosen using the min-conflict Istieriand with probability
p this value is chosen randomly. Following the indication$1#], p = 0.02 is used.
Finally, random restarts are used to break out of local agtim

2.3 ERA model

Zou and Choueiry also implemented a multi-agent-basedsdar solving the GTA
Assignment Problem [9-11]. Liu et al. [14] proposed the ERgodthm (Environ-
ment, Reactive rules, and Agents), a multi-agent-basediséar solving CSPs. Each
agent represents a variable. The positions of an agent EntisonmentE correspond
to the values in the domain of the variable. First, ERA plabesagents randomly in
their allowed positions in the environment, then it consideach agent in sequence.
For a given agent, it computes the constraint violationsamheagent’s position. An
agent moves to occupy a positiareo position ) that does not break any of the
constraints that apply to it. If the agent is already ire#io position , ho change
is made. Otherwise, the agent chooses a position to movedahoice being deter-
mined stochastically by the reactive ruldg)( The agents keep moving until they all
reach azero position (i.e., a full, consistent solution) or a certain time perias
elapsed. After the last iteration, only the CSP variableegponding to agents iero
position  are effectively instantiated. The remaining ones remaiasaigned (i.e.,
unbounded). This algorithm acts as an ‘extremely’ decémém local search, where
any agent can move to any position, likébrcing other agents to seek other positions



This extreme mobility of agents in the environment is thesogefor ERA'S unique im-
munity to local optima, as uncovered by the experiments #1]9. It is indeed the
only search technique to solve instances that remain uedddy any other technique
we tested. Zou and Choueiry also uncovered the weaknessfAdbBRver-constrained
problems, where a deadlock phenomenon undermines itditstabsulting in particu-
larly short solutions. However, it has been shown that thisnqmmenon can be advan-
tageously used to isolate, identify, and represent cosilich compact manner.

3 Randomized BT search with restarts

Unlike ERA and local search, general backtrack (BT) seaeshthe nice property of
being complete and sound. However, the performance of $steuBT proved to be
unpredictable in practice and seriously undermined bystiirg (i.e., searching un-
promising parts of the search space). Thrashing can beiegglay incorrect heuristic
choices made early in the search process, and forces BThaeaxplore large ‘barren’
parts of the search tree. As the problem size increasesfféutseof thrashing become
more important, and the performance of search dramatidaityeases. Another ma-
jor problem is the high degree of unpredictability in the-time of BT over a set of
problem instances, even within the same problem type. Gahak [1] noticed that
this run-time can be often modeled by a heavy-tailed distidm. They proposed to use
randomization and restart strategies to overcome thigatming of systematic search.
First we review the main concepts, then we describe the tategfies that we tested.

Gomes et al. [1] demonstrated that randomization of héaristoices combined
with restart mechanisms is effective in overcoming theat&ef thrashing and in reduc-
ing the total execution time of systematic BT search. Thrasin BT search indicates
that search is stuck exploring an unpromising part of theckespace, and thus inca-
pable of improving the quality of the current solution. Ithenes apparent that there is
a need to interrupt search and to explore other areas of #hetsgpace. It is important
to restart search from a different portion of the search spaiherwise it will end up
traversing the same paths. Randomization of branchingdsgarch is used to this end.
Randomness can be introduced in the variable and/or vatlexring heuristics, either
for tie-breaking or for variable and/or value selectiontekfchoosing a randomization
method, the algorithm designer must decide on the type ¢anteechanism. This
restart mechanism determines when to abandon a particuland restart the search.
Here the tradeoff is that reducing the cutoff time reducespitobability of reaching a
solution at a particular run. Several restart strategige baen proposed with different
cutoff schedules. Some of the better known ones are the @intaft strategy and Luby
et al.’s universal strategy [15], the randomization andd-apstart (RRR) of Gomes et
al. [1], and the randomization and geometric restarts (R&RYalsh [2]. Among the
above listed restart strategies, RRR and RGR have beerdtadd empirically tested
in the context of CSPs. All of these restart strategies aticgh nature, i.e. the cutoff
value for each restart is independent of the progress matiegdsearch. Some restart
strategies (e.g., fixed-cutoff strategy of [15] and RRR @f)ploy an optimal cutoff
value that is fixed for all the restarts of a particular probiastance.



However, the estimation of the optimal cutoff value regsi@epriori knowledge of
the cost distribution of that problem instance, which is krmdwn in most setting and
must be determined by trial-and-error. This is clearly rmactical for real-world appli-
cations. There are other restart strategies that do notarged priori knowledge (e.qg.,
Luby et al.’s universal strategy [15] and Walsh’s RGR [2]h€eV utilize the idea of an
increasing cutoff value in order to ensure the completeoktbe restart strategy. How-
ever, if these restart strategies do not find a solution irirthi@l few restarts, then the
increasing cutoff value leads to fewer restarts, which miajdythrashing and dimin-
ishes the benefits of the restart strategy. We propose atrssttegy that dynamically
adapts the cutoff value for each restart based on the peafurenof previous restarts.
We do this at the expense of completeness. We also implethB:@G& and empirically
compared it with our dynamic restart strategy.

3.1 Randomization and Geometric Restarts

Walsh proposed the Randomization and Geometric RestaBR)Rtrategy to automate
the choice of the cutoff value [2]. According to RGR, searchogeds until it reaches
a cutoff value for the number of nodes visited. The cutofiueafor each restart is a
constant facton;, larger than the previous run. The initial cutoff is equathte number
of variablesn. This fixes the cutoff value of thé" restart atr.»* nodes. The geometri-
cally increasing cutoff value ensures completeness wéthtpe of solving the problem
before the cutoff value increases to a large value. We sluwdieious values of and
report them in this paper. We combined this restart stratégythe backtrack search
of Section 2.1, randomizing the selection of variable-ggiairs.

3.2 Randomization and Dynamic Geometric Restarts

We now introduce a simple but effective improvement to RGRtiSrestart strategies
suffer from the problem of increasing cutoff values aftestegestart. While this ensures
completeness of the search, it results in fewer restaus,ititreasing the likelihood of
thrashing and diminishing the probability of finding a sauat Our proposed strategy,
Randomization andynamicGeometric Restarts (RDGR), aims to attenuate this ef-
fect. It operates by not increasing the cutoff value for thikofving restart whenever
the quality of the current best solution is not improved upaten the current restart
improves on the current best solution, then the cutoff vaduecreased geometrically,
similar to RGR. Because the cutoff value does not necegsadtease, completeness
is no longer guaranteed. This situation is acceptable itiGgtipn domains (like ours)
with large problem size where completeness is, anywayasilide in practice. Smaller
cutoff values result in a larger number of restarts takirgcplin RDGR than RGR,
which increases the probability of finding a solution. Alhet implementation details
are similar to RGR.

Let C; be cutoff value for thé&" restart and be the ratio used to increase the cutoff
value. In RGR the cutoff value is updated according to theagqn: C; 1 = r.C;. We
use the following equation in RDGR:

1)

= r.C; when the solution has improved at té restart
*+1 7\ ¢, otherwise



In RGR, the cutoff value for each restart is determimetependentlpf how search
performed at the previous step. However, this is not the tasBDGR. Each time
search begins with a different random seed, it traversdsrdift search paths. Some
paths may be more fruitful than others. RGR and RDGR follogvdame cutoff sched-
ules for search paths that improve solutions. When this tsthe case, RGR cutoff
values keep on increasing, thus making RGR more of a randohiZ search than a
randomized BT search with restarts. In contrast, RDGR kesefusf at smaller values.
This explains the dynamic nature of RDGR. For problems thanat tight, solutions
are found within a few restarts. In such cases, RGR and RDGibi¢similar behav-
iors. For tight and over-constrained problems, RDGR seentominate RGR as we
show in our experiments (Section 4).

4 Experiments and results

We tested and compared the above listed 5 search strategiasly: BT (Section 2.1),

LS (Section 2.2), ERA (Section 2.3), RGR (Section 3.1), abf3R (Section 3.2). BT

is deterministic and the other 4 search techniques (i.e. HFA, RGR, and RDGR)

are stochastic. In the terminology introduced by Hoos aridzt&t in [16], these are
optimization Las Vegas algorithms, RGR is probabilisticapproximately complete

(PAC), and LS, ERA, and RDGR are essentially incomplete. &étetl these search
techniques on the 6 real-world data-sets of the GTA AssigrirReoblem shown in

Table 1. Three of the data sets (1, 3, and 4) are over-consttaand the remaining
ones (2, 5, and 6) are tight but solvable. Table 2 shows tHenpeance of BT on data
set 1 for various run times.

Data set 1(69 variables, over-constrained)

CPU run time | 30se¢ 5 min| 30 min 1 houl 6hours 24 hour$
Shallowest BT level 54 53 52 52 51 51
Longest solution 57| 57| 57| 57| 57| 57|
Geometric mean of 2.15 2.17 2.17 2.21 2.27 2.27
preference values

# Backtracks 1835 47951 261536 532787 3274767 13070031
# Nodes visited 3526 89788 486462 989136 6059638 24146133
# Constraint checks|8496118(3168397361813726855358440769(2156991197M6996547613

Table 2. Performance of BT for various CPU run-times.

We repeated our experiments 500 times for all stochasticlsgaocedures. Nat-
urally, a single run is sufficient for BT because it is detaristic. We found that the
average run-time for all stochastic algorithms stabiliaitsr 300 runs on all our data,
as shown in Figure 3 for data set 1, which justifies our degidige experimented with
different run-times for each run of each algorithm. We abgoegimented with different
ratios used to increase the cutoff value in RGR and RDGR. Wiepeoe the perfor-
mance of the algorithms using the following criteria:



Data set I: Moving averages for CPU Time
—RGR | |
-~ RDGR

140

Cumulative Averages [sec]

100

80 ) ) ) [\Iumbqr of sarpples ) )
50 100 150 200 250 300 350 400 450 500

Fig. 3. Moving average for CPU run-times for data set 1.

1. Solution quality distribution§SQD) taking as reference the longest known solution
for each data set, as recommended by Hoos and Stitzle in§0Q#)’'s are cumu-
lative distributions of the solution quality, similar togtcumulative distributions
of run-time in run-time distributions. The horizontal axepresents in percent the
relative deviation of the solution sizefrom the longest known solutio$,,,;, com-
puted as(s‘”);:&. Thus, the point 0% on the-axis denotes the longest solution
and, the poin{ZO% denotes a solution that is 20% shortetlibdbngest solution.

. Descriptive statisticef all the solutions found, for all search techniques.

3. 95% confidence intervaif the mean improvement using 25 mean sample points,

each sub-sample being of size 20. The confidence intervalcaaputed using
a t-distribution. The improvements of RDGR with respect to &ggoathm A are

computed as:

N

X(A) — X(RDGR) @)
X(4)

where X is deviation from the best known solution in percentageld8lreports

the improvements of RDGR over RGR and ERA.

ImprovementX ) =

We report the results for the following data sets (the sanaditative observations
hold across all data sets):

— Data set 1 as a representative of an over-constrained pnoBlesults are shown in
Figures 4, 5, 6, and 7, and Table 4.

— Data set 5 as a representative of a tight but solvable prolfesults are shown in
Figures 8, 9, 10, and 11, and Table 5.

We also evaluated all the search techniques on randomlyatedeproblems, gen-
erated with the model B type generator of of [17]. We genertitree types of randomly
generated problems, each containing 100 instances andnssahice run for 3 minutes:

— The first type of randomly generated problems (R1)warder-constrainedhinary
CSPs with 40 variables, uniform domain size of 20 values,corstraint proba-



Data seft Improvements over RGR Improvements over ERA|
LL Average UL LL Average UL
1.83 | 2.23 | 2.63 45,47 | 46.26 | 47.06
1.19 1.48 1.78 -5.64 | -5.17 | -4.69
2.61 | 2.94 | 3.27 30.05 | 32.37 | 43.69
1.03 1.35 1.66 2471 | 26.70 | 28.70
0.61 | 0.84 | 1.08 -3.54 | -3.38 | -3.23
6 0.86 1.15 1.45 -247 | -191 | -1.36

LL: lower limit of the confidence interval.
UL: upper limit of the confidence interval.

Q| B[ W[IN| -

Table 3. Improvements of RDGR with 95% confidence level
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Fig. 4. SQD for data set 1 (500 runs, 10 nfig.5. RGR and RDGR over different run-times
each). for data set 1 (500 runs).

bility, and 0.2 constraint tightness. We give their resuit&igures 12, 13 and 14.

— The second type of randomly generated problems (R2)waeconstrainedinary
CSPs with 40 variables, uniform domain size of 20 valuescOrtstraint probabil-
ity, and 0.5 constraint tightness. We give their resultsiguFes 15, 16, 17, and 18.

— The third type of randomly generated problems are fronptheese transitiorarea.
These are binary CSPs with 25 variables, uniform domain &iZkb values, 0.5
constraint probability, and 0.36 constraint tightnessylwere split into two sets,
each of 100 instances. The first set (R3) are solvable, widls¢cond set (R4) are
not solvable. We give their results in Figures 19, 20, 21 (R)R@2 (RDGR), 23
(RGR), and 24 (RGR).

Below we report our observations:

Improvement of RDGR over RGR: Figures 4, 5, 8, 9, 12, 15, 19, and 20 show that
RDGR clearly improves upon RGR. In Figures 4 and 8, RDGR haatgr proba-
bility of finding solutions up to 10% relative solution sizster that value, RDGR



Data set 1(69 variables, over-constrained)

|Search]| Mean [MediariMode |Standard dejMinimum|Maximum
BT 57 57 57 0 57 57
LS 47.12 48 49 4.44 30 55
ERA 30.99 31 32 4.37 18 45
RDGR || 59.66 60 60 0.77 58 62
RGR 58.27 58 58 2.83 23 62

Table 4. Statistics of solution size (500 runs, 10 min each).
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Fig. 6. SQDs of RGR with different ratios for cifig. 7. SQDs of RDGR with different ratios for
off value (500 runs, 5 min each). cutoff value (500 runs, 5 min each).

and RGR have similar performances. In Figures 5 and 9, RDGRis@ntly per-
forms better than RGR over different run-times. The positprovements in Ta-
ble 3 show that RDGR performs better than RGR over all the Gaa dets.

Best results on the ratio used to increase the cutoffin accordance with [2], Figures 6,
10, 13, 17, 23, and 24 show that a valuesi.1 is the best among the values tested
for RGR. While, for RGR, this optimal ratio does not chang¢hwhe problem
type (i.e., GTA vs. random problem), it does for RDGR. For@WA problem, it is
r=1.1 (Figures 7 and 11). For randomly generated problerssy#2 (Figures 14,
18, 21, and 22).

Improvement of RDGR over BT: Tables 4 and 5 show that the maximum value of the
solution sizes produced by RDGR is clearly greater thandhtte solution sizes
produced by BT. However, due to its stochastic nature, RD@fRIs from high
instability in its solution quality. On randomly generatpbblems also, RDGR
outperforms BT (Figures 12, 15, 19, and 20).

Superiority of RDGR over LS: The performance of RDGR is clearly superior to that
of LS (see Tables 4 and 5, and Figures 4, 8, 12, 16, 19, and 2®puygh this
solution quality is highly variable for both RDGR and LS, tlogr mean value of
the solution quality of LS ensures that RDGR remains sup&uiaS.
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Fig.8. SQD for data set 5 (500 runs, 10 nfig. 9. RGR and RDGR over different run-times
for data set 5 (500 runs).

each).

Data set 5(54 variables, tight but solvable)

|Searc{Mear{Mediar{Mode|Standard dejMinimum|Maximum

BT 52 52 52 0 52 52
LS 428§ 44 46 3.94 29 50
ERA |[53.99 54 54 0.04 53 54
RDGR||52.17 52 52 0.78 50 54
RGR ||51.79 52 52 1.04 49 54

Table 5. Statistics of solution size (500 runs, 10 min each).

Superiority of RDGR over ERA on over-constrained problems: On over-constrained
problems (Figures 4, 15, and 16 and Table 3), the deadloakgohenon prevents
ERA from finding solutions of quality comparable to thoseridiy the other tech-
nigues [9-11]. BT, LS, RDGR, and RGR do not exhibit such a alichny of be-
havior between over-constrained cases and solvable oegan

Performance of ERA: On solvable problem instances (Figures 8 and 12), ERA domi-
nates all techniques. It is the only algorithm that finds cletgpsolutions for nearly
all the runs. ERA completely dominates LS. However, on @a@rstrained prob-
lem instances (Figures 4 and 16) RDGR, RGR, BT and LS are isnierERA
due to the deadlock phenomenon. At the phase transitiom@sgl9 and 20), the
behavior of ERA is independent of the solvability of the desh. ERA performs
only better than LS, while RDGR, RGR and BT perform bettentBRA. This dif-
ference in performance of ERA may have to do with the strgctdithe randomly
generated problems and the GTA problem. More tests are déed@aderstand this
phenomenon.

RDGR is more stable than RGR: Due to their stochastic nature, RDGR and RGR
techniques show a high instability in their solution qualidowever, the standard
deviation column of Tables 4 and 5 show that RDGR is relatinebre stable than

RGR.
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Fig. 10. SQDs of RGR with different ratios f&ig. 11. SQDs of RDGR with different ratios for
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Sensitivity of LS to local optima: LS sensitivity to local optima makes it particularly
unattractive. Even BT outperforms LS.

Larger number of restarts in RDGR: On data set 1, the average number of restarts
is 74.5 for RDGR and 16.7 of RGR. On data set 5, the average euaflvestarts
is 56.9 for RDGR and 22.4 for RGR. This confirms our expectetigtated in Sec-
tion 3.2 that RDGR performs more restarts than RGR.

The following three statements, wheredenotes an algorithm dominance over an-
other, summarize the behavior of the 5 search strateg@sshbwn in Table 6:

— On solvable instances: ERA RDGR >~ RGR > BT ~ LS
— On over-constrained instances: RDGRRGR ~ BT ~ LS -~ ERA
— At the phase transition: RDGR RGR > BT >~ ERA >~ LS

5 Conclusions and future work

By addressing a real-world application, we are able to ifigrharacterize, and com-
pare the behavior of various search techniques. While BTaisle, it suffers from
thrashing. LS is vulnerable to local optima. ERA shows défece in performance with
different problem types. ERA has an amazing ability to seimder-constrained prob-
lems. However, ERA's performance degrades on over-cansttgroblems due to the
deadlock phenomenon. This same deadlock phenomenon mdfgtiing ERA at the
phase transition. Restart strategies effectively pretrgashing, but their solution qual-
ity is highly variable. RGR operates by increasing cutoffies at every restart, which
makes is more increasingly vulnerable thrashing. RDGRa#tes this effect by mak-
ing the cutoff value depend upon the result obtained at teeiqus restart, thus increas-
ing the number of restarts in comparison to RGR. Conseqy&TIGR exhibits a more
stable behavior than RGR while yielding at least as goodtienis. In the future, we
plan to study the following directions:
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1. Validate our findings on other real-world case-studiesd A
2. Design new search hybrids where a solution from a giveimigcie such as ERA
is fed as a seed to another one such as heuristic backtracksea
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| Characteristics |

General: Stochastic and incomplete
ERA [Tight but solvable problems: Immune to local optima
Over-constrained problems:Deadlock causes instability and yields shorter solufions

General: Stochastic, incomplete, and quickly stabilizes

LS |Tight but solvable problems: Liable to local optima, and fails to solve tight
CSPs even with random-walk and restart strategies

Over-constrained problems:Finds longer solutions than ERA

General: Stochastic, incomplete, immune to thrashing,
produces longer solutions than BT, immune to deadlock,
RDGRreliable on unknown instances, and

immune to local optima, but less than ERA

General: Stochastic, Approximately complete,
RGR |less immune to thrashing than RDGR, and
yields shorter solutions than RDGR in general.

General: Systematic, complete (theoretically, rarely in practice)
BT |[liable to thrashing, yields shorter solutions than RDGR B@&R,
stable behavior, and more stable solutions than stochasticods in general

Table 6. Comparing the behaviors of search strategies in our context



