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Abstract

We introduce INDSET, a technique for decomposing a Con-
straint Satisfaction Problem (CSP) by identifying a maximal
independent set in the constraint graph of the CSP. We ar-
gue that this technique reduces the complexity of solving
the CSP exponentially by the size of the maximal indepen-
dent set, and yields compact and robust solutions. We dis-
cuss how to integrate this decomposition technique with local
search, and evaluate SLS/INDSET, which combines INDSET
with a stochastic local search. Finally, we discuss the benefit
of identifying dangling components of the decomposed con-
straint graph, and evaluate SLS/INDSET+DANGLES, a strat-
egy that exploits this structural improvement.

1 Introduction
We present a technique that exploits the structure of a Con-
straint Satisfaction Problem (CSP) to boost performance of
solving the CSP while yielding multiple solutions. This
technique is based on identifying, in the constraint graph of
the CSP, amaximal independent setI, which is a set of vari-
ables that are pairwise not connected (see Figure 1). A con-

Figure 1:Circled vertices form a maximal independent set.

straint graph with low density is likely to have a large inde-
pendent set. Our technique, INDSET, partitions the variables
of the CSP into the two sets,I and its complement̄I, and re-
stricts the search to the variables inĪ in order to find a solu-
tion to the CSP induced bȳI. We extend the solution found
to the variables inI by applying directional arc-consistency
between the variables in̄I and those inI. This can be done
in linear-time in the number of variables inI and the num-
ber of constraints betweenI and Ī. When arc-consistency
succeeds, the process yields a family of solutions for each
of the values remaining in the domain of a variable inI.
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While any technique can be used to solve the variables
in Ī, we have developed and tested a method, SLS/INDSET,
for using this approach in combination with stochastic local-
search with steepest descent. SLS/INDSET integrates infor-
mation of the constraints between̄I andI in order to find
solutions forĪ that can be extended toI. We found that IND-
SET significantly improves the performance of SLS, and
yields robust results by finding multiple solutions and re-
turning them in a compact form.

This paper is organized as follows. Section 2 reviews
background information and related work. Section 3 de-
scribes our basic decomposition technique, INDSET, and
highlights its benefits. Section 4 discusses how to exploit
INDSET in local search. Section 5 describes an enhance-
ment to INDSET that further reduces the size ofĪ and in-
creases both the number and compactness of the solutions
found. Section 6 analyzes the features of the resulting de-
composition. Section 7 summarizes our contributions and
identifies directions for future research.

2 Background and related work
A constraint satisfaction problem (CSP) is a tupleP =
{V ,D, C}, V = {V1, V2, . . . VN} is a set ofN variables,D
= {DV1

, DV2
, . . . , DVN

} is a set of domains for these vari-
ables (a domainDVi

is a set of values for the variableVi),
andC is a set of relations on the variables resticting the al-
lowable combination of values for variables. Solving a CSP
requires assigning to each variableVi a value chosen from
DVi

such that all constraints are satisfied. We denotePX

the CSP induced onP by a setX ⊆ V of variables. We fo-
cus here onbinary CSPs: each constraint is a relation on at
most two variables. Thetightnesst of a constraint is the ra-
tio of the number of tuples forbidden by the constraint to the
number of all possible tuples. Theconstraint ratior, also
called here constraint density, is the ratio of the number of
constraints in the CSP to the number of possible constraints
in the CSP. We assume that there is at most one constraint
for each pair of variables. Theconstraint graphof a CSP
is a graphG where each variable in the CSP is represented
by a vertex inG, and each (binary) constraint in the CSP
is represented by an edge inG, connecting the two corre-
sponding vertices. Aneighborof a vertex (variable)Vi is
any vertex that is adjacent toVi (i.e., shares a constraint with
Vi). The set of all such variables is theneighborhoodof Vi.



An independent setin G is a set of verticesI such that the
subgraph induced byI has no edges (i.e., a set of pairwise
non-adjacent vertices). Amaximal independent set is one
that is not a subset of any larger independent set. A maxi-
mal independent set is to be distinguished from amaximum
independent set, which is the largest an independent set in
the graph. Our experiments userandom problemsgenerated
according to Model B (Achlioptaset al. 1997). The param-
eters for the random problems are the number of variables,
domain size (same for all variables), tightness (same for all
constraints), and constraint ratio.

INDSET, first reported in (Gompert 2004), may be consid-
ered as one of the techniques that exploit ‘strong backdoors’
(Williams, Gomes, & Selman 2003). These are techniques
that divide a problem into two sets of variables, search is
done on one of the sets (i.e., the backdoor), and the result-
ing partial solution can be expanded to a full solution (or be
shown to be inconsistent) in polynomial time. In our case,
the complement̄I = V \ I of our independent setI forms
a ‘strong backdoor.’ Indeed, any instantiation ofĪ leads to a
linear-time solvable sub-problemPI , sincePI has no edges.

Another example of a backdoor is a cycle-cutset. In
the cycle-cutset decomposition technique, CYCLE-CUTSET,
one chooses a setA of variables such that removingA
from the constraint graph leaves the graph acyclic (Dechter
& Pearl 1987; Dechter 2003). Thus, given any assign-
ment forA, the remaining tree can be solved in linear time
with backtrack-free search (Freuder 1982). Like INDSET,
CYCLE-CUTSET is also more beneficial when the constraint
graph has low density, because finding a smaller cycle-
cutset increases the benefit of the technique, and small cycle-
cutsets are less likely to exist in dense graphs, just as large
independent sets are less likely to exist in dense graphs. We
compare and contrast these two decompositions in further
detail in Section 6.2.

A related work, carried out in the context of SAT, parti-
tions the set of Boolean variables in a SAT problem into ‘in-
dependent’ and ‘dependent’ variables and exploits this dis-
tinction in local search (Kautz, McAllester, & Selman 1997).
The technique is heavily dependent on SAT encodings and
its application to CSPs is not straightforward.

Finally, except for (Choueiry, Faltings, & Weigel 1995),
none of the decomposition techniques reported in the liter-
ature discuss the ‘production’ of multiple solutions, a by-
product of our technique. We argue that this feature of IND-
SET, shared to a lesser extent by CYCLE-CUTSET, sets our
approach apart from the rest.

3 Basic decomposition
In this section, we show that INDSET not only improves the
performance of search but enables it to return multiple solu-
tions.

INDSET partitions the variables of a CSP into two sets
I and Ī, such thatI is a maximal independent set of the
constraint graph. By definition, no two variables inI are
neighbors, and, becauseI is maximal, every variablev in Ī
has a neighbor inI. Otherwise, we could movev from Ī to
I to obtain a larger independent setĪ. (Incidentally,Ī forms
a minimal vertex cover on the constraint graph.) LetPI be

the subgraph of the constraint graph induced byI andPĪ be
the subgraph induced bȳI.

Now, if we choose a consistent assignment for the vari-
ables inĪ, then the values of the variables inI that are con-
sistent with this assignment are determined by directional
arc-consistency onI, and can be found in linear time. For
a given variablev in I, we know that the neighborhood of
v lies entirely withinĪ, thus, by choosing an assignment for
Ī, we have fixed the values of all the neighbors ofv, and
we can quickly find all consistent values forv. Any of these
consistent values could be used to form a solution. For a
given assignment of̄I, and for each variablevi in I, let di

be the set of values in the domain ofvi that are consistent
with the current assignment of̄I. For any two variablesvi,
vj in I, we have|di| · |dj | valid combinations, since there
is no constraint betweenvi andvj . In fact, every element
of the Cartesian productd1 × d2 × · · · × d|I| is an expan-
sion of the assignment of̄I to a full solution. Thus, for any
assignment of̄I we can quickly obtain all

∏
i |di| solutions

possible with that assignment, and, since the result is the
Cartesian product of subsets of domains, this possibly large
set of solutions is represented in a compact form.

Consider the following example. Figure 2 shows a CSP
decomposed using an independent setI and its complement
Ī. Figure 3 shows the result after instantiating the variables

a, b, c, d

a, b, c, d

a, b, c, d

a, b, c, da, b, c, d

a, b, c, d
I I

Figure 2:Example CSP.
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Figure 3:CSP after instantiat-
ing Ī.

in Ī and then performing directional arc-consistency onI.
The domains inI become{c, d}, {a, c, d}, and{a, b, d}.
And the set of all possible remaining solutions consists of
the Cartesian product of these three sets, along with the in-
stantiation on̄I. Thus we have found2 × 3 × 3 = 18 solu-
tions.

Again, in INDSET, we restrict search to the variables in
Ī, and, for a solution ofPĪ , we can find all the resulting
solutions using directional arc-consistency. This process re-
duces the search space by a factor exponential in the size of
I. Consequently, we would like to choose an independent set
I as large as possible. Finding the maximum independent-
set of a graph isNP-hard (Garey & Johnson 1979). How-
ever, we do not need the maximum independent-set for this
technique to be beneficial. Fortunately, many efficient ap-
proximation algorithms exist for finding independent sets
(Boppana & Halldórsson 1990). Choosing an approxima-
tion algorithm depends on how much time one is willing to
spend finding a large independent set.

For finding independent sets, we used the CLIQUERE-
MOVAL algorithm which runs in polynomial time in the
number of variables (Boppana & Halldórsson 1990). For the
problem instances we used in our experiments, CLIQUERE-
MOVAL takes negligible time to execute (less than the clock



resolution, which 10 msec).

4 Using INDSET with local search
Exploiting independent sets is straightforward for system-
atic backtrack search, since we can obtain a performance
benefit by searching over the variables ofĪ before those
of I. However, in general, it is less clear how decomposi-
tion and/or structural information can be used to improve
stochastic search (Kautz, McAllester, & Selman 1997).
Therefore, we focus our investigations on how to use IND-
SET in conjunction with local search. Our solution is to
guide the local search on̄I with information from the con-
straints betweenI andĪ.

4.1 Local search
Local search designates algorithms that start with a random
assignment and make incremental changes to it in an at-
tempt to converge on a solution. The basic local-search
technique makes the greedy incremental changes that best
improve some evaluation function. A common evaluation
function is the number of broken constraints in the assign-
ment. We examine the case of stochastic local search (SLS)
with a “steepest descent” heuristic, and empirically evaluate
the improvement obtained from combining it with INDSET.

We consider Algorithm 1, the SLS algorithm as described
in (Dechter 2003).

Algorithm 1 SLS

for i = 1 to MAX TRIES do
make a random assignment to all variables
repeat

if no broken constraintsthen
return current assignment as a solution

end if
choose variable-value pairxi, ai that most reduces
number of broken constraints whenxi ← ai

xi ← ai

until no further changes occur
end for

This algorithm starts with a random initial assignment to
the variables, and then makes incremental changes until it
finds a consistent assignment. At each step, SLS consid-
ers all variable-value pairs in the problem and evaluates, for
each variable-value pair, the number of broken constraints
resulting from changing the assignment of the variable to
the value in the pair, and chooses the pair that yields the
minimum number of broken constraints breaking ties lexi-
cographically. This heuristic is called the “steepest descent”
(Galinier & Hao 1997). This atomic step is repeated until
either a solution is found or no improvement is possible, in
which case the search is restarted from a new random as-
signment. The process is repeated for a specified number of
restarts or a given time duration unless a solution is found.

4.2 SLS/INDSET

We extend SLS into SLS/INDSET, which performs SLS on
Ī, and is guided by the constraints betweenPI andPĪ . We

incorporate the information about the constraints between
PI andPĪ by modifying the method by which SLS counts
broken constraints.

When counting broken constraints, SLS/INDSET also in-
cludes some measurement of the number of broken con-
straints betweenPI andPĪ . Whether or not a particular
constraint betweenPI andPĪ is broken is a vague concept.
As a result of this imprecision, there is more than one way to
consider these constraints to be broken or not. For two vari-
ables inĪ, the situation is clear: values have been assigned to
them and these values either do or do not violate a constraint.
For a constraint betweenPI andPĪ , we have an assignment
of the variablev in Ī , but not to the variableu in I. There
may be multiple values foru which support the assignment
to v. Even if there are multiple values inu supported by
every constraint onu, it is still possible for directional arc-
consistency onu to annihilate its domain. Below we discuss
five ways to measure the brokenness of the constraints onu.

4.3 Counting broken constraints
When designing a criterion for determining whether the con-
straints are broken or not, we would like to maintain the
property that the number of broken constraints is zero if and
only if we have at least one consistent solution to the CSP.
Once we have no broken constraints, then, given the assign-
ment onĪ and the filtered domains of the variables inI, we
obtain at least one solution, and usually a large number of
solutions. We implemented and tested five ways to count
the number of broken constraints:None, Zero-domain,
Some, All, andPrefRelax.
None: The simplest approach is to simply ignorePI and

the constraints betweenPI andPĪ (see Figure 4). We per-
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Figure 4:None.
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Figure 6:All.

form search solely to find a solution toPĪ , and then we
check whether this partial solution extends to a full solution.
If not, then we restart search again onPĪ with a new random
initial assignment. Note that this heuristic does not maintain
the property outlined above (i.e., the number of broken con-
straints may be zero even when we have not found a solution
to the CSP). One would expect that this approach performs
poorly. We include this heuristic in our experiments solely
as a frame of reference.

In the remaining methods, we filter the domains of the
variables inI, given the instantiation of̄I and the constraints
betweenPI andPĪ . This directional arc-consistency may
leave some of the variables inI with empty domains.
Zero-domain: In this heuristic we simply add the re-

sulting number of variables with empty domains to the num-
ber of broken constraints inPĪ . On random problems, this
method performed worse than SLS alone. In special cases



SLS/INDSET(Zero-domain) did outperform SLS. In star
graphs (West 2001), for example, it is obvious that any use of
independent set information will yield an improvement, be-
cause it is easy to find an independent set containingn − 1
of the variables. INDSET allows us to focus the search on
the single, center variable that really affects the problem.
SLS alone will spread its search across the entire star graph,
wasting much of its effort. In trivial cases like this, even the
poor-performingzero-domain significantly outperforms
SLS. Because this heuristic performed poorly in preliminary
experiments on random CSPs, we will not discuss it further.
Some: In this method, we iterate through each of the con-

straints betweenPI andPĪ (see Figure 5). Consider one
such constraintCu,v with u being the variable inI andv

being the variable in̄I. We reduce the domain ofu to those
values allowed by the constraint, given the value currently
assigned tov. Each successive constraint onu may further
reduce the domain ofu. For each constraint, if this filtering
annihilates the domain ofu, then we consider the constraint
to be broken. Any other constraint onu that we consider af-
terwards is also considered to be broken. Note that the value
returned by this heuristic depends on the order in which we
examine the constraints onu.
All: In this next method, we filter the domains inPI

and then, for each variable left with an empty domain, we
considerall of the constraints on that variable to be broken
(see Figure 6). Thus, we include in the count of broken con-
straints the sum of the degrees of the variables ofI left with
empty domains.
PrefRelax: We also attempted a heuristic using pre-

ferred relaxations of (Junker 2004). A relaxation is a subset
of constraints that has a solution. For each variablev in I,
we found the preferred relaxationR of the constraints onv,
given the lexicographical order of the constraints.|Dv|−|R|
was used as the measurement of the number of broken con-
straints onv. PrefRelax is a more accurate measurement
of the number of broken constraints. Even better would be
to find themaximumrelaxation of the constraints. How-
ever, computing the maximum relaxation requires exponen-
tial time in the worst case. For the problem sets in our ex-
periments,PrefRelax did not provide a significant im-
provement overSome, likely due to the sparseness of the
problems. Further investigations may reveal an improve-
ment ofPrefRelax on denser graphs. Also, heuristics for
ordering the constraints onv may improve performance of
PrefRelax as well asSome

Note that these heuristics are applicable not only for the
combination of INDSET with SLS but also for that of IND-
SET with other iterative repair algorithms.

4.4 Empirical evaluation
We empirically compared the performance of SLS with that
of SLS/INDSET with three of the heuristics described in
Section 4.3. We tested each algorithm on random CSP in-
stances (Model B), with 80 variables, 8 values, a constraint
tightness of 58%, varying the number of constraints around
the phase transition. For the problems used in these experi-
ments, the CLIQUEREMOVAL algorithm found independent
sets of size 36, on average, varying with density. For each

point, we tested each algorithm on over 1000 instances with
a cutoff time of 120 seconds per instance. We report in Fig-
ure 7 the percentage of instances each algorithm solved.
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Figure 7:Percentage solved for SLS and SLS/INDSET.

Note that the curves for the different algorithms/heuristics
have similar shapes but appear shifted to the left or right.
The curves farther to the right correspond to solving a larger
percentage of the problems. As a curve shifts to the right,
it approaches the similar curve representing the percent-
age of problems that are actually solvable, corresponding
to the phase transition. It is not feasible to compute the ac-
tual phase-transition curve for large size problems because
a complete solver is needed. Consequently, we cannot eas-
ily determine how closely the algorithms tested approach the
actual curve.

It is clear from the graphs thatNone, as expected, per-
forms poorly. It is surprising however that it performs
as well as it does, considering that it is merely stumbling
around in the dark by ignoring a large number of vari-
ables and constraints. The best-performing algorithm is
SLS/INDSET usingSome, althoughAll is not far behind.

Finally, SLS/INDSET, with the various heuristics, returns
a large number of solutions on average. In general, the algo-
rithm returns an average of about three values per variable
in I. If the independent set contains 30 variables, then the
number of solutions obtained is approximately330.

The runtime for SLS and SLS/INDSET are shown in Fig-
ures 8, 9, and 10. Each graph increases density until SLS be-
comes unable to solve most of the problems. Note that SLS
alone sometimes runs faster on problems with low tight-
ness and density. Solving these problems is usually sim-
ple enough that the overhead of SLS/INDSET unnecessary.
INDSET provides greater benefits closer to the phase transi-
tion area.

5 Identifying dangling trees
We can do some additional processing to enhance INDSET
and extend its benefits. We propose to do so by detecting
trees that ‘dangle’ off the variables inI. For a variable
u in I, we find connected, acyclic, induced subgraphs that
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become disconnected from the rest of the graph ifu is re-
moved. These subgraphs are trees said to ‘dangle’ fromu.
We can find these dangling trees quickly, using a linear-time
breadth-first search. Algorithm 2, FINDDANGLESONVAR,
finds the set of variables in trees dangling off a given vari-
able. An example of extracting these dangling trees is shown
in Figure 11. The graph on the left is a CSP decomposed us-
ing the independent setI. The graph on the right shows the
result after identifying the dangling trees. Note that someof
the vertices in the dangling trees were removed fromI and
some fromĪ, yieldingI ′ ⊆ I andC ⊆ Ī respectively. Let
T be the set of variables in the trees dangling offI ′. Algo-
rithm 3, GETTREE, performs a breadth-first search starting
with v2, without searching pastv1, and stopping if a cycle is
found. In the worst case, this algorithm requires time linear
in the number of variables in the subgraph containingv2 af-
ter v1 is removed. Thus, in the worst case, it requires time
linear in the number of variables in the graph (O(n)). FIND-
DANGLESONVAR requires timeO(n), because we can have
mark GETTREEnodes as it searches, to ensure that we never
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Figure 11:Dangling trees.

visit a node twice.

Algorithm 2 FINDDANGLESONVAR(v).

result← ∅
for eachneighborof v do

result← result
⋃

GETTREE(v, neighbor)
end for
return result

Suppose we enforce directional arc-consistency, from the
leaves of the dangling trees towards the variables inI ′. If
any domains are annihilated, then we know immediately,
andbefore any search is done, that the problem is not solv-
able. Also, any selection of a value remaining in the domain
of a variable inI ′ can be extended to a solution of the trees
dangling off that variable. Now, given an assignment onPC ,
since any two variables inI ′ (and their respective dangling
trees) are disconnected from each other, we can select their
values independently of each other.

Furthermore, we can completely ignore the nodes inT
during search, because we know that any value that remains



Algorithm 3 GETTREE(v1, v2).

Require: v1 andv2 are adjacent variables.
Ensure: Return set of variables of the tree rooted atv2 dan-

gling off v1; otherwise return∅
result← v1

stack← v2

while NOTEMPTY(stack) do
nextvar← POP(stack)
N ← NEIGHBORSOF(nextvar)
I ← result

⋂
N

if SIZEOF(I) 6= 1 then
return ∅ {We found a cycle}

end if
N ← N \ I
result← result

⋃
nextvar

stack← stack
⋃

N
end while
return result\{v1}

in the domain of a variable inI has a support. Thus, if we
find a partial solution for the variables inC and if directional
arc-consistency can successfully extend this partial solution
to the variablesI ′, then we know that this partial solution
can necessarily be extended to at least one full solution in a
backtrack-free manner (Freuder 1982). We can also deter-
mine a lower bound on the number of solutions as described
in Section 6.1. In summary, we can perform search using
an algorithm like SLS/INDSET on C andI ′ just as we did
before onĪ andI, respectively, and ignore the vertices inT .
Thus, identifying dangling trees reduces our search space
because|C| ≤ |Ī|. It also reduces the cost of the filter-
ing step at each iteration because|I ′| ≤ |I| and the number
of constraints betweenC andI ′ is smaller than the number
of constraints betweenI and Ī. Figure 12 shows the effect
of dangle identification on reducing the number of variables
that search needs consider.
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Figure 12:Size ofC andĪ relative to the number of variables.

We implemented SLS/INDSET+DANGLES based on
SLS/INDSET. Because using the dangling trees requires a
preprocessing step of at least directed arc-consistency from

the leaves of the trees to the roots, we decided to apply
(full) arc-consistency as a preprocessing step to our exper-
iments. For a fair comparison, we perform arc-consistency
before each algorithm is executed. Because arc-consistency
itself can find a problem instance to be unsolvable, we kept
only randomly generated problems that can be made arc-
consistent and considered 1000 such instances per point.

Figures 13 and 14 show the results of comparing SLS,
SLS/INDSET, and SLS/INDSET+DANGLES using Some
and at two different values of tightness.
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For the lower tightness (i.e., Figure 13), the fall-
off curve appears with a larger number of con-
straints, and the distinction between SLS/INDSET, and
SLS/INDSET+DANGLES disappears. The improvement
of SLS/INDSET+DANGLES over SLS/INDSET is more
visible at tightness 58% (Figure 14). For this tightness,
the average CPU time of SLS/INDSET was up to twice
that of SLS/INDSET+DANGLES, for these experiments. In
conclusion, identifying trees dangling off the independent-
set variables of sparse graphs further focuses the efforts



of search, and reduces the amount of time required per
iteration of search. Further, by removing some variables
from Ī, DANGLES may increase the number of solutions
found by search.

Like SLS/INDSET, SLS/INDSET+DANGLES has a
greater benefit closer to the phase transition area. Intu-
itively, it also has a greater benefit for lower-density graphs,
which have a higher probability of having larger dangles.
Indeed, we find that SLS/INDSET+DANGLES provides the
greatest benefit when the phase transition is found in lower-
density graphs, which occurs as tightness increases. An ex-
ample is shown in Figure 15, where the runtime cumula-
tive distribution shows SLS/INDSET+DANGLES dominat-
ing SLS/INDSET for these tight, sparse problems.
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Figure 15: Runtime Cumulative Distribution fort = 60% and
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6 Analysis
Below, we report some qualitative analysis of INDSET.
First, we explain how our approach allows us to compute
lower bound on the solutions extendible from a given partial
assignment. Then we re-discuss, this time in greater detail,
the relationship of our technique with CYCLE-CUTSET.

6.1 Computing lower bounds of the number of
solutions

After instantiating the variablesC, the nodes inI ′ become
the roots of a forest (see Figure 11). Each of the trees in
this forest can be solved independently of the others, which
increases the robustness of our solutions because modify-
ing the solution to one tree does not affect the others. Note
that CYCLE-CUTSET does not necessarily yield such inde-
pendent trees, and when it does, recognizing them requires
additional effort.

In addition to improving the performance of problem
solving and returning multiple solutions, INDSET allow us
to compute a lower bound of the number of solutions that
can be extended from the partial assignment.

After instantiating the variables inC, when performing
directed arc-consistency (DAC) onI ′ does not annihilate the
domain of any of the variables inI ′, then the number of so-
lutions to the CSP is bounded from below by the product of

the size of the largest domain of the trees rooted inI ′. In-
deed, in each tree, we know that any value of each domain
is part of some solution. Thus, we can choose any value for
any of the variables in a tree and extend it to a full solution
of the tree using backtrack-free search. Consequently, the
number of solutions must be at least the size of the largest
domain in the tree. Furthermore, since each of the trees can
be solved independently, the product of the maximum do-
mains of all the trees gives us a lower bound on the number
of solutions we have obtained for the entire CSP.

Another possible method for obtaining perhaps an even
better lower bound is to perform backtrack-free search on
each tree, using bundling (Haselböck 1993)1. At each step,
we choose the largest bundle. Each element of the cross
product of the domain bundles gives a solution to the tree.
Thus, the product of the sizes of the bundles chosen gives us
a lower bound on the number of solutions in the tree. The
product of these lower bounds of each tree again gives us a
lower bound on the number of solutions for the original CSP.

6.2 Comparison to cycle-cutset decomposition

INDSET and INDSET+DANGLES are both special cases of
CYCLE-CUTSET, because they both identify a subset of ver-
tices that, when instantiated, leave the rest of the constraint
graph acyclic. However, both of these decompositions go
further than the general CYCLE-CUTSET of (Dechter &
Pearl 1987). INDSET goes further than leaving the graph
acyclic, it leaves the graph with no edges at all. The par-
ticularity of INDSET+DANGLES with respect to CYCLE-
CUTSET is a little less obvious.

In CYCLE-CUTSET, removing the cutset nodes leaves the
constraint graph acyclic. The remaining graph may have
multiple components, each a tree. These trees may be con-
nected to the cycle-cutset in multiple places. In contrast,
INDSET+DANGLES leaves trees, each of which hasat most
one vertex adjacent to the cutset. This fact results in the ad-
vantage of allowing us to ignore all but one vertex of the
tree when performing search. On the other hand, in CYCLE-
CUTSET, a tree that has even two vertices adjacent to the
cutset greatly complicates matters. We can no longer afford
to only look at those vertices adjacent to the cutset, because
there may be a cycle in the graph going through the tree.
In this case,arc-consistency is not enoughto guarantee our
independent choices for values of the neighborhood of the
cutset.

Another issue of importance is that by going further than
CYCLE-CUTSET (i.e., cutsets that leave the graph with even
less connectivity), our cutsets are going to be larger than
the ones of CYCLE-CUTSET. This tradeoff is worth explor-
ing. In fact, work has been done exploring the other direc-
tion, finding and using cutsets that leave the graph with more
connectivity with the benefit of having smaller cutsets (e.g.,
w-cutsets (Bidyuk & Dechter 2004)).

1Note that static (Haselböck 1993) and dynamic (Beckwith,
Choueiry, & Zou 2001) bundling on trees yield the same result.



6.3 Heuristics and DANGLES

We compared the effect of using the different heuristics
(of applying INDSET to local search) to the effect of using
DANGLES. The runtime comparison is shown in Figure 16.
SLS/INDSET+DANGLES(All) performs worse on average
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Figure 16:Comparison of heuristic to use of DANGLES.

than SLS/INDSET(Some). From Section 4.3, we know that
Some performs better thanAll, and we know that using
DANGLES performs better than not using DANGLES, thus,
from Figure 16 it appears that the benefit ofSome overAll
is greater than the benefit of DANGLES. Consequently, the
choice of heuristic has a greater influence than whether or
not DANGLES is used.

7 Conclusions
Our results demonstrate that finding a large independent set
in the constraint graph and using it to decompose the CSP
improves the performance of solving the CSP. An additional
benefit of our approach over other decomposition techniques
is that it inherently provides us with many solutions, at no
extra cost beyond that incurred by the search process, and
the multiple solutions are represented in a compact form. We
can gain further improvement by identifying and extracting
trees that dangle off the independent set. Additional infor-
mation can be reaped from these trees, such as estimating
a lower bound on the number of solutions obtained. Future
investigations include the following:

1. Investigate the effect of the size of the independent set on
the performance of the technique.

2. Perform experiments on structured problems such as clus-
tered graphs (Hogg 1996).
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