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Abstract. In this paper we describe a reformulation strategy for solving multi-
dimensional Constraint Satisfaction Problems (CSPs). This strategy operates by
iteratively considering, in isolation, each one of the uni-dimensional constraints
in the problem, and exploits the approximate symmetries induced by the selected
constraint on the domains in order to enforce this constraint on the simplified
problem. We use the game of SET, a combinatorial card game, as a toy prob-
lem to motivate our strategy and to explain and illustrate its operation. However,
we believe that our approach is applicable to more complex domains of scien-
tific and industrial importance, and deserves more thorough investigations in the
future. Our approach sheds a new light on the dynamic reformulation of multi-
dimensional CSPs. Importantly, it advocates that modeling tools for Constraint
Programming should allow the user to specify the constraints directly on the
attributes of the domain objects (i.e., variables and values) so that their multi-
dimensionality can be exploited during problem solving.

1 Introduction

Yoshikawa & Wada [1992] introduced multi-dimensional Constraint Satisfaction Prob-
lems (CSPs) and used them to model many applications of practical importance such as
resource allocation and configuration. In a multi-dimensional CSP, the domains of all
variables are identical and the domain values are specified according to a set of domain
dimensions (i.e., attributes). Constraints that apply to a single domain dimension are
said to be uni-dimensional, otherwise they are multi-dimensional. In this paper, we pro-
pose a general reformulation strategy for solving multi-dimensional CSPs that reduces
the cost of problem solving by facilitating the discovery of approximate symmetries.
Our strategy, shown in Figure 1, operates on a multi-dimensional CSP by iteratively en-
forcing each uni-dimensional constraint on the corresponding domain dimension while
ignoring all other constraints and domain dimensions. Ignoring all but one constraint
allows one to identify, in the relaxed problem, symmetries that do not hold in the orig-
inal problem [Freuder & Sabin, 1995; 1997]. Such approximate symmetries can be
exploited to reduce the computational cost of enforcing the constraint on the relaxed
problem. Each step in Figure 1 may discover unsolvability or produce one or more sim-
plified subproblems where the considered constraint holds. At the end of the process,



any constraint solver can be used to solve the resulting problem(s) by enforcing the re-
maining constraints. In [1995; 1997], Freuder & Sabin propose a similar approach that
exploits of symmetry known as neighborhood value interchangeability [Freuder, 1991].
Their strategy differs from ours in that it has a single abstraction step (ref. 2. Reduce’
in [Freuder & Sabin, 1997]). Indeed, the first simplified CSP is solved and its solution
is used to solve the original CSP. In contrast, in our approach, we foresee a sequence of
reformulation steps, each enforcing a single uni-dimensional constraint.

P,: Original CSP
Uni-dimensional constraints: {C,,C,,C;,...,C,}

Exploit approximate| symmetries to enforce C,

y

P,: A set of reformulated CSPs
Uni-dimensional constraints: {C,,C;,...,C,}

Exploit approximate| symmetries to enforce C,

v
P,: A set of reformulated CSPs
Uni-dimensional constraints: {C;,...,C,}

Exploit approximatelsymmetries to enforce C;

P,: A set of reformulated CSPs
Uni-dimensional constraints: &

Enforce remaining constraintslusing some Constraint Solver
Fig. 1. A general reformulation strategy for multi-dimensional CSPs.

In this paper, we introduce a reformulation algorithm that ‘instantiates’ the general
strategy of Figure 1 to solve the game of SET,* a combinatorial card game. This game
was invented in 1974 by Marsha Jean Falco,’ a population geneticist. She was inspired
to create the game by her work on determining whether epilepsy in German shepherd
dogs is inherited [Davis & McLagan, 2003]. We propose for SET a multi-dimensional
constraint model with four uni-dimensional constraints. We describe a basic constraint
solver for solving an instance of the game. Our solver is a simple backtrack search
procedure with symmetry breaking that finds all the solutions of the instance. Our re-
formulation algorithm for SET features the following components: (1) Heuristics for
selecting the uni-dimensional constraint to consider at each step; (2) The use of meta-
interchangeability [Freuder, 1991] as an approximate symmetry; and (3) A disjunctive
decomposition of an intermediate CSP into subproblems with non-overlapping solu-
tions as a result of enforcing the selected uni-dimensional constraint. We show that our
reformulation significantly reduces the problem-solving effort.

We have implemented our approach in an online interactive system for a single
player and for two players. Naturally, the value of the system is not in solving the
game, which, given its size, can be played by humans without the help of a computer
and is widely enjoyed by children and mathematicians alike. However, we believe that
our system, when completed,® will be useful to teach and demonstrate problem-solving

‘http://en.wikipedia.org/wiki/Set_ (game)
Shttp://www.setgame.com/set/history.htm
6 A tool for displaying and explaining the reformulation steps has yet to be developed.



strategies to students in Computer Science and to the general public. Beyond SET, our
approach sheds a new light on the dynamic reformulation of CSPs, leading the way to
new strategies for effective problem solving. We believe that our approach is applicable
to more complex domains of practical industrial importance beyond the toy problem
considered in this paper, which calls for future investigations. In particular, we advocate
that modeling tools for Constraint Programming should allow the user to specify the
constraints directly on the attributes of the domain objects (i.e., variables and values) so
that their multi-dimensionality can be exploited during problem solving.

This paper is structured as follows. Section 2 gives background information about
the game and multi-dimensional CSPs. Section 3 describes our model and the search
procedure for solving it. Section 4 introduces our reformulation of the model. Section 5
discusses our reformulation algorithm for SET. Section 6 discusses our results. Sec-
tion 7 presents our interactive interface, available online on http://gameofset.
unl.edu. Section § relates our work to previous research. Finally, Section 9 concludes
this paper drawing directions for future research.

2 Background

We provide background information about the game and the modeling techniques.

2.1 The Game of SET

SET is a combinatorial card game consisting of a deck of 81 playing cards. Each card
is uniquely determined by the values of four attributes, namely, the number of objects
drawn on the card and their color, filling, and shape. We denote these attributes by N,
C, F, and S, respectively. Each attribute takes one of three possible values as follows:
{1,2,3} for the dimension number, {red,green,purple} for color, {striped full,empty}
for filling, and {squiggle,oval,diamond} for shape, see as shown in Figure 2.

Number| 1 2 3 G P,
Color red |green |purple o é g . .
m  m |

Filling

s | U 1010

Fig. 2. The four attributes and their values.

Fig. 3. A solution set.

To play the game, twelve cards are dealt and placed, face up, on the table, visible to
all players. The players compete to find a collection of exactly three cards that constitute
what we call a solution set. For each of the above listed attributes, the three cards of a
solution set must all have either the same value or different values for the attribute.
Figure 3 shows three cards forming a solution set. In this example, the three cards differ
on all four attributes. The first player to identify a solution set picks it up, and the
cards are replaced with new ones from the deck. If all players agree that a solution set
cannot be found among the twelve cards, three more are dealt and the game resumes.
The operation is repeated until a set is found. Usually, the number of cards on the table
quickly returns to twelve. The maximum number of cards on the table at any one time
is 21, because any combination of 21 cards is guaranteed to have at least a solution set.



The proof was performed by exhaustive computation [Davis & McLagan, 2003]. The
game continues until all cards have been picked up or there are no more sets among the
remaining cards. The winner is the player with the largest number of sets at the end of
the game. For the sake of space, our examples will show game instances with only nine
cards although the original game considers twelve cards.

Obviously, a simple nested for-loop can ‘easily’ generate all combinations of three
cards. Each combination can then be tested to check whether or not it satisfies the
constraints. Such an approach is shortsighted. Indeed, human beings are unlikely to play
the game by examining (132) = 220 combinations. Instead, it is fair to assume that they
use various modeling and reformulation strategies. It would be equally ridiculous to
use the simple nested for-loop to solve industrial-size problems because the number of
combinations grows exponentially with the size of the problem and few of the generated

combinations satisfy the constraints. For example, (132) = 220 combinations have on
average 2.77 solutions and (831) = 85320 combinations have only 1080 solutions. Thus,
the simple nested for-loop is a strategy that is not interesting to teach a human player or

to use for automation in an industrial setting.

2.2 Constraint Satisfaction Problems (CSPs)

A Constraint Satisfaction Problem (CSP) is defined by P = (V, D, C) where V is a set
of variables, D a set of domains, and C a set of constraints. Each variable V;€) has a
finite domain D;€D. Each constraint in C applies to a subset of the variables (the scope
of the constraint), and restricts the combination of values that those variables can take
at the same time. A solution to a CSP is an assignment of a value to each variable such
that all the constraints are satisfied. Solving a CSP requires finding one or all solutions.
In [1992], Yoshikawa & Wada defined of a multi-dimensional CSP as a CSP where
(1) All variables have the same domains,’” and (2) The domain can be specified by a
multi-dimensional array of values, where each value is described by a combination of
domain dimensions. They called one-dimensional constraint a constraint defined over a
single domain dimension, otherwise the constraint is said to be multi-dimensional.

3 Solving SET as a CSP

Now, we describe our constraint model and a search procedure for finding all solutions.

3.1 A Constraint Model for SET

Our constraint model has (only!) three variables corresponding to the three cards of a
solution set: V = {V4, V2, V3}. All three variables have the same domain, which are the
cards ¢; placed on the table: Dy = Dy = D3 = {c1,¢a,...,¢;}, where i € [3,21]. We
model the domain of a SET variable as a multi-dimensional array indexed by the follow-
ing attributes of the playing cards: number, color, filling, and shape (see Figure 3). We
also include the unique identifier id of a playing card as a fifth pseudo-attribute in order
to uniquely identify each card. The two-dimensional array shown in Figure 4, which we
call the domain table, is a flattened representation of a multi-dimensional domain.
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Fig.5. The constraint network of the
Fig. 4. The domain table of a nine-cards example. CSP of a SET instance.

To represent the game of SET, we use a set of five ternary uni-dimensional con-
straints on {V7, Vo, V3}. The constraints, for an attribute A where A € {N,C, F, S}
and the card id, are defined according to the following templates: A=, All three vari-
ables must have the same value for the attribute A; and A7, All three variables must
have all different values for the attribute A. The constraints are:

N= @ N7#: All three cards have the same number or three different numbers.
C= @ C#: All three cards have the same color or three different colors.

F= @ F7: All three cards have the same filling or three different fillings.

S= @ S7: All three cards have the same shape or three different shapes.

5. id#: A solution set consists of three (distinct) cards.

S

The constraints setis C, = {(N7 @ N=), (C7 © C7),(F7” @ F~), (57 © S7),id” }.
Figure 5 shows the constraint network of our model. Constraints can be specified either
in extension or in intension. Given the number of variables of the constraint model
(i.e., three), implementing the constraint in intension seems to be the simplest choice.
Indeed, if the constraints were to be implemented in extension, the constraints can be
built once and for all (domains size equal to 81) or dynamically every time a CSP is
formed to be solved (domains size in [12,21]). The number of allowed tuples to generate

and store for a domain of 81 cards is P (81,3) = (Sfifg)! = 511920. Otherwise, it is
between: P (12, 3) = a2gy; = 1320 and P (21,3) = 5t5; = 7980. Although the

remaining constraints are significantly smaller (less than 33 tuples), it is obviously more
cost effective to implement all constraints in intension than in extension.

3.2 Solving the Constraint Model

We implemented a simple backtrack search to find all the solution sets of any number
of playing cards. In order to avoid generating solutions that can be obtained from other
solutions by simple permutation of the cards over the three variables, we have added
to the model a symmetry-breaking constraint based on lexicographical ordering of the
cards unique identifiers. Given that the constraint on an attribute A has two mutually
exclusive components (i.e., A= and A7), our backtrack search implements a convenient
combination of forward checking and back-checking [Prosser, 1993]. The symmetry

" We will relax this condition, sometimes, during reformulation.



breaking constraint, the id# constraint, and all equality constraints (A~) are enforced
by forward checking. The four all-different constraints (A7) other than id# are enforced
by back-checking. The depth of the search tree is at most three. When the first variable
is instantiated, the only checkable constraints are id” and the symmetry breaking one.
They are enforced by forward checking. After instantiating the second variable, we can
determine by back-checking, for each of the remaining four attributes, which of the
two constraints (equality A= or inequality A7) holds between the first two variables.
The constraint that applies is selected and the other one is “switched off.” At this point,
if any equality constraint on the current variable is “switched on,” it is enforced by
forward checking. The domains of the third variable is consistent with all applicable
equality constraints. If any all-different constraint A7 is applicable (i.e., switched on),
then back-checking is applied to consider only consistent instantiations. In general, and
depending on the constraints, one may be able to enforce higher consistency levels.

4 Constraint Model Reformulation

In this section, we reformulate our constraint model for SET by exploiting the multi-
dimensionality of the domains. First, we describe how we partition the variables’ do-
mains based on the values of a given domain dimension. We show that this process
yields, in the case of the game of SET, a disjunctive decomposition of the CSP produc-
ing a set of CSPs at each reformulation step, which we illustrate with two examples.

4.1 Model Reformulation

Each reformulation step in Figure 1 partitions the variables’ domains according to a
domain dimension and enforces the constraint relative to that dimension. We illustrate
this process on an example. Consider the six-card game of Figure 6. All cards are red
and have an empty filling. The only constraints left to enforce are {N= @& N7, S~
& S%, id?é}. Considering first the dimension ‘number,” we partition the variables’ do-
mains into equivalences classes based on the values of the chosen dimension, num-
ber (see Figure 7). This operation corresponds to domain partitioning by value meta-
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Fig. 8. The domains of the variables are identical. Fig. 9. Domains are all different.




interchangeability [Freuder, 1991]. All subproblems can be generated by a Cartesian
product of the domain partitions. However, enforcing the constraint N= @ N7 and ig-
noring symmetrical subproblems that can be obtained by domains permutation yield a
decomposition of the CSP into only four CSPs: one for each domain partition enforc-
ing N~ (Figure 8) and one where the domains have all-different partitions enforcing
N# (Figure 9). The solutions of the CSP are also partitioned over the four generated
problems. This process can be repeated for the remaining domain dimension.

4.2 Reformulation strategy for SET

The strategy of Figure 1 exploits the one-dimensionality of the constraints of the CSP
model where each one-dimensional constraint is applied to the CSP in sequence, one at
a time. For SET, we showed how exploiting value meta-interchangeability for a given
dimension and enforcing the constraint relative to that dimension decomposes the CSP
into four subproblems whose solution sets do not overlap. Combining the reformulation
strategy of Figure 1 and domain partitioning yields the reformulation tree of Figure 10.

Original CSP

Enforcing mutually exclusive i|* C={4,4,4;A4,}
constraints of each dimension i\e D,=D,=D

,§ P(4,,a) P(4,.b) P(4,,c) P(4,.#)

2 CC={Ay Az A} (e C={dp Az Ay | |0 C={dy Ay At | |2 C={AA34,}
] ¢ D,=D,=D; ¢ D,=D,=D; ¢ D,=D,=D; ¢D,#D,#D;
= P A

£

S

£ P(4,.0) P(4,#) P(d;,a) P(d4;.#)

£ cC= Ay} |0 C= {434, cC= A A} |0 C= {44

?, ¢ D,=D,=D; ¢ D,#D,#D; (D, #D,#D; J{¢ D, # D, # Dy
s I~N— == —7\N ITX—

Fig. 10. One-dimensional constraints are applied in sequence, mutually exclusive in parallel.

In this figure, A; denotes a domain dimension, a, b, ¢ domain partitions, and P(A4;, a)
the subproblem resulting from enforcing the constraint relative to A; and a. Two im-
portant questions arise in general:

1. Which dimension (i.e., attribute) to choose at each step? Naturally, one should re-
duce the branching factor by choosing, for example, the dimension that yields the
smallest problem, the most symmetries, the largest domain partitions, etc.

2. Which subproblems are generated at each branching step? The decomposition of
Section 4.1 depends on the interchangeability and constraint types that hold for the
considered dimension. Generalizing this decomposition for all types of symmetries
and constraints requires further investigation.

In Section 5.2, we answer the above two questions for the game of SET. Our approach
is based on the analysis of the domain table shown in Figure 4. Below, we motivate that
approach with two examples, see Sections 4.3 and 4.4. All generated subproblems have
the same set of variables. They differ in the constraints and the variables’ domains. To
generate the children of a given problem in the tree of Figure 10, we need to specify the
set of constraints and the domain set of each child. The constraints set of a child sub-
problem is that of the parent minus the constraints of the attribute used in the branching.



The domains of a child is smaller than those of its parent, which is the main incentive for
the decomposition. As for the set of domains of a child, we distinguish the case where
the enforced constraint at the branching step is an equality or an inequality constraint.
The former keeps all domains equal whereas the latter yields a new problem where
variables have different domains. Below, we illustrate the above on two examples.

4.3 Branching on equality constraints

Figure 11 shows the example of Figure 4 with a compacted the domain table. Focusing
on the dimension filling, we notice that filling takes only two values e and f.
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Fig. 11. The compacted domain table of the example of Figure 4.
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Fig. 12. Branching on equality constraints F'~. Fig.13. Cell 10! shows that no card

with a striped filling exists.

We conclude that we should form only two CSPs: one for the cards with an empty
filling (i.e., {2,¢3,¢8,¢9 }) and the other for the cards with a full filling (i.e., {c1,¢4,¢5,¢6,
c7}). Because there is no card with a striped filling, we should not generate (1) a
subproblem for this third possible value or (2) a subproblem where F7 holds. The
two generated subproblems have one fewer constraint than their parent and the do-
mains of the variables in each subproblem are the same. The tree of Figure 12 illus-
trates the partitioning of the cards cy, ..., cg as described above, then the partitioning
of {c2,c3,¢8,¢co} and {c1, ¢4, 5, g, c7} given the domain dimension number. To de-
tect the above-described situation, our algorithm examines the (detailed) domain table
shown in Figure 13. Column [/ sums up the number of cards in the domain for a given
attribute value (represented as a row in the table). The null entry in Cell 10/ indicates
that there is no card with a striped filling (Row 10) in the domain, and that selecting
filling as a dimension for reformulation would yield only two subproblems and not four.



4.4 Branching on an inequality constraint

Figure 14 shows the compacted domain table of the six-cards example of Figure 6.

il 2 e Rc3 D;=D,=D;|¢;|e;y|e;]e|es|eq
1] U 0 0 8 Number 202|1|1|3]|1
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Fig. 14. The compacted domain table of the example of Figure 6.
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Fig.15. D1 # D» # D3 when enforcing N7.  erated.

The remaining one-dimensional constraints are over shape and number. The refor-
mulation step can choose either dimension. Choosing the dimension number partitions
the variables’ domains into three sets of cards: {cs, ¢4, ¢}, {c1, c2 }, and {c5 } with num-
ber values 1, 2, and 3, respectively, see Figure 15. The subproblems with the domains
{c1,¢2} and {c5} have less than three cards and are thus unsolvable. Our algorithm
realizes that fact by checking on the values in cells 3! and 4l of Figure 16.8 Now, in
the subproblem where N # holds, the three CSP variables have all-different domains,
one for each value of the attribute number (i.e., 1, 2, and 3). In summary, because the
entries in 3/ and 4 of Figure 16 are in [1,3) we generate the the subproblem for N7
but not the one with domains {c;, co} or {cs5}.

5 Reformulation Algorithm

Below we describe our reformulation algorithm for the game of SET. It is motivated by
the examples of Figures 12 and 14 and implementing the general strategy of Figure 1.

5.1 Decomposition Tree for SET
The tree nodes maintain the following information about the subproblem at the node:

8 Only two domain dimensions are shown in Figure 16, reflecting the constraints applicable on
the problem on top of Figure 14.
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1. Set of variables: The set of variables and their domains.

2. Set of constraints C: The set of applicable constraints. The one-dimensional con-
straints are reduced by one from a parent to a child.

3. Domain table: The table describing the multi-dimensional domain such as the one
shown in Figure 4 to which we add the column indexed ! as shown in Figures 13,
16, and Table 1. The [ column sums up the values of the ¢;’s in each row in the
corresponding table. It indicates the number of cards with the corresponding at-
tribute value. This domain table is useful for choosing the attribute to branch on as
illustrated in Sections 4.3 and 4.4.

Table 1. Domain table. Table 2. Summary of domain table.
a b lcldl el flg hliljlkll a blcldlel flel h
1 | Attribute/vall ¢, | ¢, | ;| ey | es| cg| c;|es|eg] Z ;1 | Attribute/val |2, |2, | Z s 1| Z ) T2,
Ifr{ofojofo|1/0]|0(0]2 5 Hdililolol2
3 | Number [ 20| 1|/0|0|1|0|1|0]|1]|4 ShNumber |2l 1122424
4 slojof1|1|ofo|o|1]|0]3 4 slalilili]s
5 rlf1{0f0j0f0|1|0]|0(0]2 5 Hdilolololt
6| Color |g|O|1|O|L|1|0|0|0O|1]|4 6 | Color glt|2f1[2]4]16
7 plOjO|T|OfO|O|1|1|Of3 7 pl1|1[2|2|4
8 Sl1r(ojofojofojof1|1|3 8 flrjof2fo}|3
9| Filling |e[O0|[1/0(0[0|0[0|0|O0]|1 9 | Filling el1|0[O0f[O0O]|1]12
10 slofoft|t|1]1|1|o]o]s 10 slilsli]3]a4
11 sfrfojojojojojo|o|1|2 11 sltlol1lol2
/2] Shape |o|O|1|0O|1|1|1|0[|0|0]|4 12| Shape ol1 1300424
i dlolof1|ofofo|1|1]|0]3 13 dilol2lols

Note that only the entries corresponding to the applicable constraints need to be
represented and updated. Entries corresponding to constraints enforced in an an-
cestor node in the decomposition tree are omitted as in Figure 16.

4. Summary of domain table: When the variables’ domains are all different (i.e.,
D; # D5 # Dj3), we generate an additional table that is the summary of the domain
table, see Table 2. Here again, we keep and maintain only entries (i.e., rows) corre-
sponding to applicable constraints. Columns c, d, and e sum up the number of cards
with a given attribute value in the corresponding domain. Columns f and g are the
product and sum, respectively, of the entries in columns ¢, d, and e in the same row.
Finally, column h is the product of the values in column g for the same attribute.
The heuristics introduced below justify the use of this summary information.

5.2 Flow Chart

Our algorithm, see flow chart in Figure 17, operates under the following assumptions.
An agenda is used to keep track of all ‘open problems.” At the start, the original problem
is placed on the agenda. Solving with BT search indicates finding all the solutions to a
subproblem using the search procedure described in Section 3.2. The solution sets found
are stored in some unspecified data structure. One may choose to enforce some level of
consistency on each generated subproblem before placing it the agenda. Subproblems
that are deemed unsolvable are not added to the agenda.
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Fig. 17. Our reformulation algorithm.

The algorithm uses the following test conditions and heuristics. Below, we distin-
guish problems with identical domains (i.e., D; = Dy = Ds3) and the others (i.e.,
Dy # Dy # D3). When D1 = Dy = D3, we examine only the domain table:

— Testl: When the column [ in the domain table of the subproblem has a null entry,
the two implications are enforced:

1. No card has that dimension value, the corresponding subproblem need not be
generated. For example, striped for dimension filling in Figure 12.

2. For the same reason, we cannot form a subproblem where domains are all dif-
ferent. For example, F'# in Figure 12 and N7 Figure 15.

— Heuristicl: We branch on the attribute with the largest number of zeros in the col-
umn [ because branching on this attribute yields the smallest number of new sub-
problems, and will not require creating an A7 subproblem.

— Test2: When the value in column [ for any value ¢ for a dimension A is in [1, 3),
the A’ subproblem need not be generated. For example, values 2 and 3 for the
dimension number in Figure 15.
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— Heuristic2: We branch on the dimension that has the largest number of entries in
column [ that are less than three. When there are no null entries in column [ for any
dimension, all four subproblems must be generated.

— Heuristic3: We randomly choose any of the ‘active’ dimensions. This step requires
generating all four subproblems.

When D1 # Dy # D3, we consider only the table called ‘summary of domain table’
(see example in Table 2). The columns c, d, and e indicate the size of domain Dy, Do,
and Dj3. Their product is available in columnf of the table: it is zero if some domain
is empty. Column g computes the number of cards that have the same value for the
same dimension, the product for all the products for the same dimension is recorded in
column h. A null value in column h indicates that the dimension needs to be chosen in
priority because it would yield the generation of at most two subproblems.

— Test3: The entry in column A for an attribute A of the summary of domain table is
null. In this case, there is at least one value ¢ for A that appears in no domain.

— Heuristic4: We branch on the attribute where column £ is null, breaking ties in
favor of the attribute with the largest number of null entries in column f. Note that
when an entry in column f is null (for an attribute value 4), the subproblem A’
and that where A7 holds will have at least one empty domain, and need not be
generated (or will be pruned).

— Heuristic5: We branch on the attribute where column f has the largest number of
null entries. We generate all four subproblems, those for the attribute value ¢ with a
null entry in column f will have an empty domain and will be pruned.

The above three tests cover all cases, and yield a complete and sound algorithm for
selecting a dimension for reformulation. Generating and storing the various tables is
linear in the number of attribute values. Also, once a problem is decomposed, the corre-
sponding tables can be discarded. The number of generated subproblems is O(| A[*F1)
where |A| is the number of attributes and 4 is the maximum number of attribute values.

6 Results

To evaluate the effectiveness of our reformulation strategy, we run the following three
algorithms on a set of 1000 random SET instances of domain size {3,4, ...,81}: Brute
force, search (Section 3.2), and reformulation followed by search (Section 5). ‘Brute
force’ is the algorithm with the three nested for-loops that generates all combinations
of three cards then tests whether or not they satisfy the constraints. Figure 18 shows the
number of constraint checks for increasing domain size. Figure 18 shows the number
of constraint checks (#CC) for increasing domain size; Figure 19 shows the number of
nodes visited (#N'V) for increasing domain size; and Table 3 compares the performance
of all three algorithms on two domain sizes (12 and 81 cards) displaying the average
number of solutions, #CC, #NV, and CPU time. The goal is more to compare the trends
than the raw numbers. From those results, it is apparent that reformulation dramatically
reduces the rapid growth, with increasing the domain size, of the number of constraint
checks (Figure 18) and significantly that of nodes visited (Figure 19), thus demonstrat-
ing the benefits of our reformulations. The time measurements are not significant given
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the size of the problem, the precision of the clock (i.e., 10 ms), and the time necessary
for setting up the data structures for search. While it is true that the game of SET is a
simple problem, we do believe that our techniques are widely applicable and will have
significant impact on industrial size applications.
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300000
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200000

100000 Reformulation 500

- 0

# of Constraint Check

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81

Fig. 18. Comparing the numbers of constraint Fig.19. Comparing the number of nodes vis-
checks for increasing problem size. ited for increasing problem size. Brute force
was not included given its large values.

Table 3. Comparing the performance of three algorithms.
Algorithm |#Cards|#Sol| #CC | #NV |Time [msec]‘

Brute force 1956.80 220 0
Search 12 | 2.77| 1726.65| 80.77 62.46
Reformulation 85.08| 12.65 5.85
Brute force 758808| 85320 0
Search 81 [1080|553365.00(4401.00 101.04
Reformulation 31158.00(2565.00 39.44

7 An Interactive Interface for SET

We have built a graphical user interface for SET (see Figure 20) that uses the two ap-
proaches for finding all solution sets for a given set of cards on the board. The interface
allows us to compare our solvers performance in the context of a real game of SET. The
game can be played in two modes: “Single Player” and “Two Players.” The interface
features the two automated solvers: by Backtrack Search (Section 3.2) and by Refor-
mulation (Section 5.2). The users can play the game in CSP mode or non-CSP mode.
If they are in CSP mode, they can see statistics about the current board (number of
constraint check, CPU time, etc.) as well as switch between the two solvers. We have
also provided a “2 Card Hint” button, which highlights two cards appearing in the same
solution set, letting the user find the third. We also have a “1 Card Hint” button, which
highlights one card that appears in a solution set, letting the user find the remaining two
cards. If at any time there is no solution found for the twelve cards on the board, three
more cards will flip open creating a board of up to 21 cards. If there are no solutions
found in the cards displayed, the game is over, and the user can start again. Our applet
is available online on http://gameofset.unl.edu.
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Applet Viewer: set/SETApplet.class

File About

CARD CARD i
| Options  Single Player  Two Player |
Options
CARD CARD Mode: © Single Player
O Two Player
CSP Mode:
CARD CARD ©Yes ONo
| Save |
CARD
—— —
Solve by: © Search Solutions: 0 CPU Time (ms) :
O Reformulation BT: 0 o
NV: 0 CcC: 0

Applet started. 2

Fig. 20. The graphical user interface.

8 Discussion & Related Work

Like most popular puzzles, the rules of SET are rather simple yet the game is quite ad-
dictive. We find combinatorial puzzles to be effective vehicles to introduce the general
public to Constraint Processing (CP). They are also amazingly suitable tools to attract
Computer Science students to study CP and train them in modeling, search, and prop-
agation techniques. For example, past students have developed constraint models and
various propagation algorithms for Minesweeper’ [Bayer, Snyder, & Choueiry, 2006]
and Sudoku!® [Reeson et al., 2007]. In addition to the educational benefits, our ini-
tiatives have inspired new research directions as documented in [Karakashian et al.,
2010b; Woodward et al., 2011]. Combinatorial puzzles have thus allowed us to serve
all three tenants of the academic mission, namely, research, education, and outreach.

In [1995; 19971, Freuder & Sabin described an abstraction procedure for solving
multi-dimensional CSPs, considering both multi-dimensional constraints and multi-
dimensional domains. They evaluated them on n-queens problems in [1995; 1997], and
on randomly generated problems with a controlled level of interchangeability in [1997].
Our motivation and procedures significantly overlaps with theirs: (1) Their reformula-
tion considers a single reformulation step, while ours is designed to accommodate any
number of one-dimensional constraints for reformulation; (2) After reformulation and
search, their technique includes a refinement step, which is not needed in our approach;
and (3) Finally, their experiments, conducted on random problems, do not provide the
strikingly convincing results that our approach does.

9 Conclusions & Future Work

In conclusion, we have created a reformulation strategy for multi-dimensional CSPs that
shows a significant reduction in the search effort. We believe that the techniques we have
proposed here can be applied to problems with more complex domains and with more

®http://minesweeper.unl.edu
¥ http://sudoku.unl.edu
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of a real-world significance. In addition to building a graphical tool to explain problem
solving by reformulation to students and the general public, there are several directions
for future work that we would like to explore. The first is to build a general theory
of reformulation for multi-dimensional CSPs that unifies the one proposed in [Freuder
& Sabin, 1997] and the one we have proposed above. The second is to investigate the
applicability and usefulness of such a theory for general CSPs especially in light of the
advances in the study of interchangeability and symmetry in CSPs [Freuder, 1991; Gent,
Petrie, & Puget, 2006; Karakashian er al., 2010a]. Finally, we would like to investigate
whether the definition of a multi-dimensional CSP provided in [Yoshikawa & Wada,
1992] needs to be revised to allow variable domains to be different.
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