
1

An Efficient Consistency Algorithm for the

Temporal Constraint Satisfaction Problem

Berthe Y. Choueiry a,∗ and Lin Xu a

a Constraint Systems Laboratory

Department of Computer Science & Engineering

University of Nebraska-Lincoln

E-mail: {choueiry,lxu}@cse.unl.edu

Dechter et al. [5] proposed solving the Temporal Con-
straint Satisfaction Problem (TCSP) by modeling it as
a meta-CSP, which is a finite CSP with a unique global
constraint. The size of this global constraint is expo-
nential in the number of time points in the original
TCSP, and generalized-arc consistency is equivalent to
finding the minimal network of the TCSP, which is
NP-hard. We introduce 4AC, an efficient consistency
algorithm for filtering the meta-CSP. This algorithm
significantly reduces the domains of the variables of
the meta-CSP without guaranteeing arc-consistency.
We use 4AC as a preprocessing step to solving the
meta-CSP. We show experimentally that it dramati-
cally reduces the size of a meta-CSP and significantly
enhances the performance of search for finding the
minimal network of the corresponding TCSP.

Keywords: constraint temporal networks, consistency
algorithm

1. Introduction

In this paper we study constraint propagation
in networks of metric temporal constraints, which
are an essential tool for building systems that rea-
son about time and actions. These networks model
events and their relationships (as distances be-
tween events), and provide the means to specify
the temporal elements of an episode with a tem-
poral extent. Examples of such an episode are as
diverse as a story, a discourse, a manufacturing
process, the measurements executed by the Hub-
ble space telescope, the activities of a robot, or
the scheduling of a summer vacation. The ability

*Corresponding author: B.Y. Choueiry, 256 Avery Hall,
Lincoln, NE, 68588-0115, USA.

to efficiently process temporal networks is a pre-
requisite for enabling computers to support human
users in decision making and to automate the plan-
ning and execution of complex engineering tasks.
This paper describes an efficient consistency algo-
rithm for the meta-CSP modeling the Temporal
Constraint Satisfaction Problem (TCSP) [5].

A major research effort in the Constraint Pro-
cessing community is the development of efficient
filtering algorithms. These algorithms propagate
the constraints in a problem in order to reduce
its size and enhance the performance of the algo-
rithms used for solving it. Although particularly
simple at the conceptual level, the basic mecha-
nism for ensuring arc-consistency (AC) [12,7,8] has
witnessed several refinements [9,6,1,2] and remains
the subject of intensive research [3,15]. The un-
usual attention to a mechanism executable in poly-
nomial time is justified by the fact that this simple
mechanism is at the heart of many procedures for
solving CSPs.

To the best of our knowledge, the only work re-
ported in the literature on applying consistency al-
gorithms to the meta-CSP is a study by Schwalb
and Dechter [11], which we discuss in Section 3.3.
Shortly stated, the above study changes the end
points of the temporal intervals. In contrast, our
approach considers each interval as an atomic
value, which is either kept or removed, but whose
extent is never modified.

In this paper we argue that arc-consistency of
the meta-CSP is NP-hard. We define the property
of 4arc-consistency of the meta-CSP and propose
an efficient algorithm, 4AC, for achieving it. This
algorithm, which guarantees 4arc-consistency of
the meta-CSP but, not its arc-consistency, dras-
tically reduces the size of the meta-CSP and en-
hances the performance of the search process used
for solving it. While the basic idea behind our fil-
tering algorithm is simple, the value of our con-
tribution lies in the design of polynomial-time
and space data-structures, reminiscent of AC-4

AI Communications

ISSN 0921-7126, IOS Press. All rights reserved

2 Choueiry and Xu / An Efficient Consistency Algorithm for the TCSP

[9] and AC-2001 [3] for general CSPs, that make
the algorithm particularly efficient and perhaps
even optimal for achieving the property of 4arc-
consistency. Note that optimality still needs to be
formally established.

This paper is structured as follows. Section 2
introduces our notation, the task we address and
its complexity. Section 3 introduces the concept
of the 4AC-consistency of the meta-CSP and the
algorithm for achieving it. Section 4 describes our
experiments and observations. Finally, Section 5
concludes this paper.

2. Background

We first define formally the temporal constraint
problems addressed.

2.1. STP & TCSP

A Simple Temporal Problem (STP) is defined
by a graph G = (V, E, I), where V is a set of ver-

i.jI = [3, 5]
i

j

ei,jt

t

Fig. 1. STP.

tices ti representing time points, E is a set of di-
rected edges ei,j representing constraints between
two time points ti and tj , and I is a set of con-
straint labels for the edges (see Fig. 1). A con-
straint label Ii,j of edge ei,j is a unique interval
[a, b], a and b ∈ R, and denotes a constraint of
bounded difference a ≤ (tj − ti) ≤ b. We assume
that there is at most one constraint between any
two vertices ti and tj and that the constraint ei,j

labeled [a, b] can also be referred to as the con-
straint ej,i labeled [−b,−a].

A Temporal Constraint Satisfaction Problem
(TCSP) is defined by a similar graph G = (V, E, I),
where each edge label Ii,j= {l

1
ij , l2ij , . . ., lkij} is a

set of disjoint intervals denoting a disjunction of
constraints of bounded differences between ti and
tj (see Fig. 2). We assume that the intervals in
a label are given in a canonical form in which all
intervals are pair-wise disjoint, and that they are
sorted in an increasing order of their end points.

e
i

j

= {[3, 5], [6, 9], ...}i.jI
i.j

t
t

Fig. 2. TCSP.

The superscript k of interval lkij denotes the po-
sition of the interval in the domain. This order-
ing scheme is important for the specification of our
algorithm.

Solving a temporal constraint network corre-
sponds to assigning a value to each time point all
the constraints are simultaneously satisfied. Find-
ing the equivalent minimal network can be accom-
plished by removing from the edge labels the val-
ues that do not participate in any solution. Solving
an STP and finding its minimal network can be
done in polynomial time. For example, the Floyd-
Warshall algorithm for computing all pairs short-
est paths computes the minimal network in O(n3),
where n is the number of nodes, or time points,
in the network. Solving the TCSP is NP-complete
and finding its minimal network is NP-hard [5].

2.2. The meta-CSP

Dechter et al. [5] described a backtrack search
procedure for determining the consistency of the
TCSP. To this end, the TCSP is expressed as
a ‘meta’ Constraint Satisfaction Problem (CSP),
or meta-CSP. The variables of the meta-CSP are
the edges ei,j of G. Their number |E| depends
on the density of the temporal graph and may

reach n(n−1)
2 , where n is the number of nodes in

the TCSP. The domain of a variable ei,j , denoted
Domain(ei,j), is its label, Ii,j= {l1ij , l2ij , . . ., lkij}.
The size of the meta-CSP, defined as the product
of the domain sizes of its variables Πei,j∈E |Ii,j |,

is k|E|. A variable-value pair is a tuple of a vari-
able and a value from its domain. The only con-
straint in the meta-CSP is a global constraint that
requires the variable-value pairs (vvps) {(ei,j , l

h
ij)}

for all the variables ei,j ∈ G to form a consis-
tent STP. The size of this constraint (i.e., num-

ber of possible tuples) is k|E|; it can reach k
n(n−1)

2

and is exponential in the number of time points
in the TCSP. Solving the meta-CSP corresponds
to assigning one interval to each edge from its la-
bel such that the resulting temporal network forms
a consistent STP. The backtrack search proposed

Choueiry and Xu / An Efficient Consistency Algorithm for the TCSP 3

by Dechter et al. [5] for solving the meta-CSP re-
quires checking the consistency of an STP at ev-
ery node in the search, each of which is O(n3).
Its complexity is thus O(n3k|E|). The consistency
of the TCSP can be determined by finding a so-
lution to the meta-CSP; and finding the minimal
network of the TCSP can be achieved by finding
all the minimal STP networks that are solutions
of the meta-CSP [5].

2.3. Consistency of the meta-CSP

The only constraint in the meta-CSP is a global
constraint. The application of generalized arc-
consistency to this constraint requires finding all
its tuples [10]. Finding the constraint definition is
hence equivalent to finding all the solutions of the
meta-CSP, which is NP-hard [5]. Thus, running a
generalized arc-consistency algorithm on the meta-
CSP is prohibitively expensive.

Proposition 2.1. Generalized arc-consistency on

the meta-CSP is NP-hard.

We propose to reduce the size of the meta-CSP
by considering a ternary constraint between every
three nodes of the meta-CSP forming a triangle in
the graph of the TCSP, and applying an efficient
generalized arc-consistency algorithms, which we
call4AC, to these ternary constraints (see Fig. 3).
The complexity of 4AC is O(degree(G) · |E| ·

{..., [4,9], ...}

{..., [3,5], ...}

ei,k

e ej,k

eei,j

i,k

{..., [3,5], ...}

j,k

i,j

e{..., [4,9], ...}

{..., [2,6], ...}

Variable of meta−CSP
Constraint

{..., [2,6], ...}

Fig. 3. Left: Meta-CSP with a global constraint. Right:
with ternary constraints.

k3) = O(n|E|k3), where degree(G) denotes the
largest number of edges incident to any vertex
in G. Again, the 4AC algorithm achieves 4arc-
consistency of the meta-CSP, but does not guaran-
tee that the resulting meta-CSP is arc-consistent.

However, it provides an efficient way to reduce its
size.

In order to demonstrate the effectiveness of our
approach, we test and report the performance of
4AC as a preprocessing step to search, showing
a dramatic reduction in the size of the meta-CSP.
We also report the performance improvement of
the backtrack search for solving the meta-CSP
with and without this preprocessing in terms of
CPU time and number of constraint checks CC.

3. The filtering algorithm

We approximate the generalized arc-consistency
of the meta-CSP by replacing the unique global
constraint with a ternary constraint4[ei,j , ei,k, ej,k]
among every variable ei,j , ei,k, and ej,k of the
meta-CSP that forms an existing triangle in
the temporal network G. Below, we define the
4arc-consistency property as the generalized arc-
consistency of this constraint and describe the
4AC algorithm to achieve it.

3.1. 4arc-consistency

An STP can be solved by computing the transi-
tive closure under composition and intersection of
the intervals of its edges. The transitive closure of
an STP results in a complete temporal graph.

The composition lik = lij ◦ ljk of the intervals
lij = [a, b] and ljk = [c, d] labeling the respective
edges ei,j and ej,k is a new interval lik = [a+c, b+d]
labeling the edge ei,k.

The intersection li,k = l′i,k ∩ l′′i,k of the intervals
l′ik = [a, b] and l′′ik = [c, d] labeling the respective
e′i,k and e′′i,k is a new interval lik = [maximum(a, c),
minimum(b, d)] labeling the edge ei,k.

We use the above two operations to define
the property of 4AC of a meta-CSP. For each
triangle ijk connecting the distinct time points
ti, tj , and tk in the original temporal network,
we define a ternary constraint in the meta-CSP
4[ei,j, ei,k, ej,k]. Given three variable-value pairs
(ei,j , lij), (ei,k, lik), and (ej,k, ljk) of the meta-
CSP, we say that the labeled triangle 4[(ei,j , lij),
(ei,k, lik), (ej,k, ljk)] is a consistent triangle if and
only if (lij ◦ ljk) ∩ lik 6= ∅. Fig. 4 shows a consistent
triangle 4[(ei,j , [3, 5]), (ei,k, [4, 9]), (ej,k, [2, 6])].
We also say that each variable-value pair in the tri-
angle is supported by the two other variable-value
pairs. We introduce the following three definitions:

4 Choueiry and Xu / An Efficient Consistency Algorithm for the TCSP

ei,j(, [3, 5])∆ [, ,]e i,k(, [4, 9]) ej,k(, [2, 6])

{..., [3,5], ...}

ei,j

{..., [4,9], ...}

j,ke{..., [2,6], ...}

ei,k
Ternary constraint

Variable of meta-CSP

Fig. 4. A consistent triangle.

1. The ternary constraint 4[ei,j, ei,k, ej,k] is
4AC relative to the meta-CSP variable ei,j if
and only if for every interval lxij ∈ Domain(ei,j)
there exists an interval l

y
ik ∈ Domain(ei,k) and

an interval lzkj ∈ Domain(ek,j) such that (lyik
◦ lzkj) ∩ lxij 6= ∅.

2. The ternary constraint 4[ei,j, ei,k, ej,k] is
4AC if and only if it is 4AC relative to the
variables ei,j , ei,k, and ej,k.

3. Finally, the meta-CSP is 4AC if and only if
all its ternary constraints are 4AC.

We identify all the existing triangles in the tempo-
ral network and replace each of them by a ternary
triangle constraint. The number of these new con-
straints is in O(degree(G)·|E|) = O(n|E|), and the
size of each constraint is at most k3.

3.2. 4AC algorithm

The 4AC algorithm, shown in Fig. 7, removes
the intervals in the domain of an ei,j that do not
have a support in any triangle in which ei,j ap-
pears in the temporal graph. It implements mech-
anisms for consistency checking that are reminis-
cent of AC-4 [9] and AC-2001 [3] in that it tries
to optimize the effort for consistency checking.
It uses the procedures First-support of Fig. 5
and Initialize-support of Fig. 6. The Push and
Delete operations we use are destructive stack op-
erations.
4AC operates by looking at every combination

of a vvp (ei,j , lij) and the triangles ijk in which
it appears, denoted 〈(ei,j , lij), ijk〉. The support
of 〈(ei,j , lij), ijk〉 is the first element in the do-
mains of ei,k and ej,k that yields a consistent tri-
angle. (Note that domains are and variables are
ordered canonically.) Intervals in the domain of a
variable that are not supported in any triangle are
removed from the domain. When an interval is re-
moved, some vvps may lose their support. 4AC
tries to find the next acceptable support. The pro-
cess is repeated until all vvps have a valid support
in every relevant triangle.

We use a hash-table Supported-by to keep track
of the support of each vvp (ei,j , lij) in a triangle

First-support(〈(ei,j, lij), ijk〉)
tijk ← Supported-by(〈(ei,j, li,j), ijk〉)
If tijk = nil
Then r ← 1, s← 0
Else lettijk be of

the form 4[(ei,j , lij), (ei,k, lrik), (ej,k, lsjk)]

r ← position of lrik in |Domain(ei,k)|
s← position of lsjk in|Domain(ej,k)|

For m from (s + 1) to |Domain(ej,k)|
When (lrik ◦ lmjk) ∩ lij

Return 4[(ei,j , lij), (ei,k, lrik), (ej,k, lmjk)]

When r 6= |Domain(ei,k)|
For n from (r + 1) to |Domain(ei,k)|
For t from 1 to |Domain(ej,k)|
When (lnik ◦ ltjk) ∩ lij

Return 4[(ei,j , lij), (ei,k, lnik), (ej,k, ltjk)]

Return nil

Fig. 5. First-support.

Initialize-support(G)
Support-by, Supports: two empty hash-tables
Q ← {(ei,j, lij)}, set of all vvps in the meta-CSP
Q′ ← nil

Consistency ← true

While nonempty(Q) ∧ Consistency do
(ei,j , lij)← Pop(Q)
Forall k such that ijk is a subgraph of G do
tijk ← 4[(ei,j , lij), (ei,k, lik), (ej,k, ljk)]

← First-support(〈(ei,j, lij), ijk〉)
If tijk

Then Supported-by[(ei,j, lij), ijk]← tijk

Push(〈ei,j, lij , ijk〉, Supports[(ei,k, lik)])
Push(〈ei,j, lij , ijk〉, Supports[(ej,k, ljk)])

Else Domain(ei,j)← Domain(ei,j) \ {lij}
Push((ei,j, lij), Q

′)
When Domain(ei,j) = ∅

Then Consistency ← false

Return Q′, Supported-by, Supports, Consistency

Fig. 6. Initialize-support.

ijk. A key in this hash-table is a tuple 〈(ei,j , lij),
ijk〉; its value is a consistent triangle 4[(ei,j , lij),
(ei,k, lik), (ej,k, ljk)]. The size of Supported-by is
O(|E|k degree(G)).

We also use a hash-table Supports to keep track
of what a given vvp supports in Supported-by.
The key is a vvp (ei,j , lij), and the value is a list of
the keys of Supported-by that this vvp supports.
By construction, Supports has O(|E|k) keys and
a total of O(|E|k degree(G)) elements.

Choueiry and Xu / An Efficient Consistency Algorithm for the TCSP 5

4AC(G)
Q

Supported-by

Supports

Consistency ← Initialize-support(G)
While nonempty(Q) ∧ Consistency do

(ei,k, lik)← Pop(Q)
Forall 〈ei,j , lij , ijk〉 ∈ Supports[(ei,k, lik)])
tijk ← 4[(ei,j , lij), (ei,k, lik), (ej,k, ljk)]

← Supported-by(〈(ei,j, lij), ijk〉)
Delete(〈(ei,j, lij), ijk〉, Supports[(ei,k, lik)])
Delete(〈(ei,j, lij), ijk〉, Supports[(ej,k, ljk)])
t′ijk ← 4[(ei,j , lij), (ei,k, l′ik), (ej,k, l′jk)]

← First-support(〈(ei,j, lij), ijk〉)
If t′ijk

Then Supported-by[(ei,j, lij), ijk]← t′ijk

Push(〈ei,j, lij , ijk〉, Supports[(ei,k, l
′
ik)])

Push(〈ei,j, lij , ijk〉, Supports[(ej,k, l
′
jk)])

Else Domain(ei,j)← Domain(ei,j) \ {lij}
Push((ei,j, lij), Q)
When Domain(ei,j) = ∅

Then Consistency ← false

Return {Domain(ei,j)}

Fig. 7. 4AC.

Initialize-support initializes hash-tables. It
returns these data structures, the list Q′ of vvps
deleted from the domains of the meta-CSP at the
initialization step, and a boolean variable indicat-
ing whether the meta-CSP was already found in-
consistent. 4AC, shown in Fig. 7, iterates over
the vvps that have been deleted and retracts them
from supporting entries in Supported-by.

We can prove that 4AC terminates, does not
remove any consistent intervals (i.e., is sound), and
is in O(degree(G)|E|k3) = O(n|E|k3).

3.3. Discussion

Note that we do not add any edges to the net-
work of the TCSP to triangulate it or to make it
a complete graph. Such an effort would be useless

for the sake of achieving 4AC. Indeed, two time
points that are not connected in the graph of the
TCSP (e.g., tm and tj in Fig. 8) are considered
to be linked by a universal constraint, which is
an edge labeled by {(−∞,∞)}. Finally (-∞,∞) is
an absorbing element for the composition opera-
tion, and its intersection with any other interval is
never empty. Consequently, the ternary constraint

4[ei,j, ei,m, ej,m] is necessarily 4AC, and none of
the intervals in the labels of ei,k, ei,m, or ek,m can
be removed. In particular, the label of ej,m remains
{(−∞,∞)}.

i,j
j,k

ei,j

ei,k

t
i

tje

j,k

tkei,k

tm

e

e

Variable of meta−CSP
Variable of TCSP

Constraint

{..., [3,5], ...}

{..., [4,9], ...}

{..., [2,6], ...}

Fig. 8. Left: Meta-CSP with ternary constraints. Left:
TCSP.

4AC is a generalized arc-consistency algo-
rithm for the ternary constraints of the meta-
CSP (Fig. 8 left). According to the definition
of path-consistency in quantitative temporal net-
works given by Dechter in [4], 4AC can also be
viewed as a weak path-consistency algorithm for
the original TCSP (Fig. 8 right). It is weak in that
does not modify the intervals labeling the edges of
the TCSP. In the above example, this is illustrated
by the fact that the interval in the label of ej,m is
not tightened.

Of course, the existence of an edge between ti
and tj and between ti and tm restrains the label-
ing of the edge between tj and tm. However, infer-
ring this resulting constraint is beyond 4AC and
can be achieved by path-consistency, which is a
stronger property than 4AC.

The only consistency algorithms for temporal
networks that we are aware of are NPC-1 and NPC-2

(numerical PC algorithms) of Dechter [4] and
ULT (Upper-Lower Tightening algorithm) and LPC

(Loose Path-Consistency) of Schwalb and Dechter
[11]. These algorithms aim to achieve path con-
sistency of the TCSP and may modify the inter-
vals in the label of an edge. Given the disjunc-
tive intervals of the labels of the TCSP, NPC-1 and
NPC-2 may cause a fragmentation problem, which
increases the number of intervals per label in the
TCSP and increases the size of the resulting meta-
CSP. Schwalb and Dechter introduced ULT and LPC

to avoid this fragmentation problem [11]. These al-

6 Choueiry and Xu / An Efficient Consistency Algorithm for the TCSP

gorithms approximate full path-consistency of the
TCSP.

Our approach differs from NPC-1, NPC-2, ULT,
and LPC in that we do not modify any interval la-
beling an edge in the TCSP: we either keep the
interval or remove it. We consider each interval as
an atomic value in the domain of a variable of the
meta-CSP. Our goal is to remove inconsistent in-
dividual intervals from the labels, not to tighten
these intervals. Tightening the intervals may not
terminate in the general case and may be pro-
hibitively expensive in the integral case.

4. Experimental results

We conducted empirical evaluations on ran-
domly generated TCSPs. Below we describe our
random generator, the characteristics of the exper-
iments we conducted, and our observations.

4.1. Random generator

We designed a generator of random TCSP in-
stances that guarantees that the temporal network
is connected and that a specified percentage of the
generated instances is solvable. Our generator is
designed as follows. It takes as input:

– The number of nodes n in the temporal net-
work, which is the number of time points in
the TCSP.

– The density d of temporal graph G. This de-
termines the number of edges |E| in the tem-

poral graph. Naturally, |E| ≤ n(n−1)
2 .

– The maximal number of intervals in the la-
bel of an edge k. The actual number of inter-
vals per label is chosen randomly in a uniform
manner between 1 and k.

– The range of the nodes selected from R =
[1, r], with r ∈ N.

– The percentage pc of solvable problems.

We generate a random TCSP example according
to the steps below:

1. We select values in R to correspond to posi-
tions of time points in this interval. We en-
force that the first node of the graph has po-
sition 1, and the last node in the graph has
position r. Then we select randomly (n − 2)
distinct points within the given interval R,
excluding the extremities of R.

2. We use the n(n−1)
2 combinations of two time

points ti and tj (with ti < tj) generated
above to generate a list L of edges ei,j . Then
we build the list E of edges by edges ran-
domly selecting |E| edges from L.

3. Measuring the distance δ = (tj − ti) for each
edge ei,j in E, we label ei,j with a random
number of intervals in [1, k] while ensuring
that there is at least one interval [a, b] such
that δ ∈ [a, b]. This ensures that the resulting
TCSP has a solution.

4. With probability (1−pc), we swap the labels
of two random edges in the graph.

5. Finally, we test the graph for connectivity
and discard the unconnected graphs.

4.2. Experiments conducted

We tested4AC on the randomly generated con-
nected problems of Table 1. Our generator guar-
antees that at least 80% of these problems have at
least one solution. We average the results over 100
samples.

In order to demonstrate the filtering power of
4AC, the comparison of the average size of the
meta-CSP before and after filtering is shown in
Fig. 9 for TCSP I and Fig. 10 for TCSP II. The
numerical values reported in Table 4.2 and Table 3.

Table 1

Problems tested (100 samples per point).

n k Density |E|

Range Step Range

TCSP I 8 [1, 5] [0.02, 0.1] 0.02 [7, 9]

8 [1, 5] [0.2, 0.9] 0.1 [11, 26]

TCSP II 20 [1, 5] [0.02, 0.1] 0.02 [22, 36]

20 [1, 5] [0.2, 0.9] 0.1 [53, 173]

In order to demonstrate the advantages of4AC,
we report the cost of finding all the solutions
of the meta-CSP with and without this prepro-
cessing. To solve the meta-CSP we use the ba-
sic chronological backtrack search described in [5].
This search process requires solving an STP at
each node expansion. To this end, we use the Direc-
tional Path-Consistency algorithm DPC of Dechter
[4]. In our experiments, DPC is significantly more
efficient than the Floyd-Warshall algorithm in de-

Choueiry and Xu / An Efficient Consistency Algorithm for the TCSP 7

Fig. 9. Reduction of problem size of TCSP I. Fig. 10. Reduction of problem size of TCSP II.

Table 2

Performance of 4AC on TCSP I

Graph Number of Size of meta-CSP Number Cost of search Cost of search Cost of 4AC

density variables of solutions without 4AC with 4AC

in meta-CSP Original Filtered CPU [s] CC CPU [s] CC CPU [s] CC

0.02 7 16701.67 16701.67 16701.67 13.6 518463.66 13.62 518463.66 5.00E-04 0

0.04 8 58448.44 40831.72 4176.91 21.6 843112.7 17.86 712777.7 5 0.0011 55.53

0.06 8 64780.24 48399.24 4837.69 25.03 965354.3 22.02 868557 0.0012 50.98

0.08 9 282427.3 142638.28 1437.01 24.23 1008288.4 18.14 782634.6 0.0022 122.7

0.1 9 271254.2 132758.27 1331.86 26.08 1103695.6 17.83 793677.7 0.0017 134.14

0.2 11 4257366 653949 105.88 23.95 1105540.5 6.43 335393.7 0.0033 324.44

0.3 13 6.81E+07 2424326.7 20.02 16.32 866010.3 2.1 117963.0 5 0.005 575.8

0.4 15 1.10E+09 1117395.5 5.97 22.13 1320010.5 0.49 29187.06 8 0.0075 880.23

0.5 18 6.64E+10 62.07 2.4 26.11 1630835.2 0.07 3654.7 0.0115 1383.8

0.6 20 1.06E+12 33.21 2.35 29.25 1932359.2 0.07 3821 0.015 1711.11

0.7 22 1.61E+13 31.16 2.19 34.87 2297002.5 0.077 3607.89 0.0192 2059.18

0.8 24 2.74E+14 2.41 1.66 57.13 3946315 0.07 3226.7 0.0217 2393.2

0.9 26 5.23E+15 2.48 1.6 74.39 5128653 0.08 3851.71 0.0262 2839.48

termining the consistency of the STP (although it
does not necessarily yield the minimal STP) [13].

Fig. 9 also shows the number of the solutions of
the meta-CSP for TCSP I. We do not show this
number in Fig. 10 because the meta-CSP corre-
sponding to TCSP II is large and finding all its
solutions is prohibitively expensive.

The results of solving the meta-CSP in terms of
CPU time and constraint checks CC for TCSP I
are shown in Figs. 11 and 12, and the numerical
values are reported in Table 4.2. In this table, we
also report the cost of running 4AC, although it
is already included in the cost of search in order
to demonstrate that the overhead due to filtering
is practically negligible.

4.3. Observations

The comparison of Figs. 9 and 10 shows that
the pruning power of4AC increases with the den-

sity of the TCSP. It also shows that 4AC dra-
matically reduces the size of the meta-CSP espe-
cially when density is high. Further, Fig. 9 shows
that the size of meta-CSP obtained after filtering
by 4AC is close to the number of solutions for
high-density networks. Both behaviors are typical
of consistency filtering techniques used as a pre-
processing step to search.

Figs. 11 and 12 show the cost of finding all
the solutions of the meta-CSP, with and without
preprocessing with 4AC, in terms of constraint
checks and CPU time, respectively. The figures
show that preprocessing does not negatively affect
the cost of search under low density and is tremen-
dously effective in reducing the total cost under
high density. Indeed, the cost of search is almost
negligible when density is high. In contrast, search
without preprocessing with 4AC is prohibitively
expensive when density is high.

8 Choueiry and Xu / An Efficient Consistency Algorithm for the TCSP

Table 3

Performance of 4AC on TCSP II

Graph Number of variable Size of meta-CSP Cost of 4AC

density in meta-CSP Original Filtered CPU [s] CC

0.02 22 1.51E+13 9.31E+12 4.10E-03 86.01

0.04 26 4.16E+15 1.05E+15 0.0064 253.1

0.06 29 2.97E+17 5.66E+16 0.008 362.02

0.08 33 7.27E+19 3.94E+18 0.0111 558.49

0.1 36 4.45E+21 1.72E+19 0.014 811.03

0.2 53 7.86E+31 1.11E+22 0.0362 2581.44

0.3 70 2.00E+42 1.48E+08 0.072 5268.13

0.4 87 2.23E+52 1545.05 0.114 8047.06

0.5 105 2.62E+62 79.69 0.168 11324.46

0.6 122 1.96E+73 60.2 0.254 15446.33

0.7 139 1.90E+83 37.11 0.332 20522.24

0.8 156 6.46E+93 23.55 0.433 26050

0.9 173 1.88E+104 24.6 0.554 33139.41

Fig. 11. Constraint checks for finding all solutions of
the meta-CSP corresponding to TCSP I.

Fig. 12. CPU time for finding all solutions of the
meta-CSP corresponding TCSP I.

When density is low, the temporal graph has few
edges; hence the meta-CSP has relatively few vari-
ables and its size is small. When density increases,
the number of edges in the temporal graph, and
hence the number of variables in the meta-CSP, in-
creases exponentially. However, this increases the
number of triangles in the temporal graph and
enhances the filtering power of 4AC, which re-
moves most intervals. In all cases, the experiments
strongly support using4AC when solving a TCSP.

Moreover, the use of 4AC seems to uncover the
existence of a phase transition around a density
value of 0.09. The existence of a phase transition
in solving the TCSP was already noted in [11,14]
but deserves more thorough investigation.

5. Conclusions

From the experimental results reported in the
previous section, we draw the following conclu-
sions:

1. 4AC can dramatically reduce the size of the
meta-CSP, especially when density is high.
Hence it helps to improve the performance of
the backtrack search to solve the meta-CSP.

2. The cost of 4AC is negligible compared with
the cost of the search for solving the meta-
CSP.

This establishes that the 4AC is a cheap and ef-
fective consistency algorithm and should become

Choueiry and Xu / An Efficient Consistency Algorithm for the TCSP 9

part of any standard preprocessing technique for
solving the TCSP.

One interesting direction for future research is to
integrate 4AC in a look-ahead strategy for solv-
ing the TCSP. Another research direction is to use
4AC to improve the performance of the ULT and
LPC algorithms of Schwalb and Dechter [11] since
the two approaches are orthogonal and, to the best
of our knowledge, the only efficient consistency fil-
tering techniques for TCSPs reported in the liter-
ature.

Acknowledgments:

This work is supported by a NASA-Nebraska
grant and the CAREER Award #0133568 from
the National Science Foundation. We are indebted
to the anonymous reviewers for their comments,
which helped us improve our presentation.

References

[1] Christian Bessière. Arc-Consistency and Arc-
Consistency Again. Artificial Intelligence, 65:179–190,
1994.

[2] Christian Bessière, Eugene C. Freuder, and Jean-
Charles Régin. Using Constraint Metaknowledge to
Reduce Arc Consistency Computation. Artificial In-
telligence, 107 (1):125–148, 1999.

[3] Christian Bessière and Jean-Charles Régin. Refining
the Basic Constraint Propagation Algorithm. In Proc.
of the 17 th IJCAI, pages 309–315, Seattle, WA, 2001.

[4] Rina Dechter. Constraint Processing. Morgan Kauf-
mann, 2003.

[5] Rina Dechter, Itay Meiri, and Judea Pearl. Temporal
Constraint Networks. Artificial Intelligence, 49:61–95,
1991.

[6] Yves Deville and Pascal Van Hentenryck. An Efficient
Arc Consistency Algorithm for a class of CSP Prob-
lems. In Proc. of the 12 th IJCAI, pages 325–330, Sid-
ney, Australia, 1991.

[7] Alan K. Mackworth. Consistency in Networks of Re-
lations. Artificial Intelligence, 8:99–118, 1977.

[8] Alan K. Mackworth and Eugene C. Freuder. The com-
plexity of some polynomial network consistency algo-
rithms for constraint satisfaction problems. Artificial
Intelligence, (25) 1:65–74, 1984.

[9] Roger Mohr and Thomas C. Henderson. Arc and Path
Consistency Revisited. Artificial Intelligence, 28:225–
233, 1986.

[10] Roger Mohr and Gérald Masini. Good Old Discrete
Relaxation. In European Conference on Artificial In-
telligence (ECAI-88), pages 651–656, Munich, W. Ger-
many, 1988.

[11] Eddie Schwalb and Rina Dechter. Processing Disjunc-
tions in Temporal Constraint Networks. Artificial In-
telligence, 93:29–61, 1997.

[12] David Waltz. Understanding Line Drawings with
Scenes with Shadows. In P.H. Winston, editor,
The Psychology of Computer Vision, pages 19–91.
McGraw-Hill, Inc., 1975.

[13] Lin Xu and Berthe Y. Choueiry. A New Efficient Al-
gorithm for Solving the Simple Temporal Problem. In
Mark Reynolds and Abdul Sattar, editors, 10th In-
ternational Symposium on Temporal Representation
and Reasoning and Fourth International Conference
on Temporal Logic (TIME-ICTL 03), pages 212–222.
IEEE Computer Society Press, 2003.

[14] Lin Xu and Berthe Y. Choueiry. Improving Backtrack
Search for Solving the TCSP. In Principles and Prac-
tice of Constraint Programming (CP 03), pages 754–
768, Kinsale, County Cork, Ireland, 2003. LNCS 2833,
Springer Verlag.

[15] Yualin Zhang and Roland H.C. Yap. Making AC-3 an
Optimal Algorithm. In Proc. of the 17 th IJCAI, pages
316–321, Seattle, WA, 2001.

