Al Communications 17 (2004) 213-221
10S Press

213

An efficient consistency algorithm for the
Temporal Constraint Satisfaction Problem

Berthe Y. Choueiry * and Lin Xu

Constraint Systems Laboratory, Department of Computer Science and Engineering,

University of Nebraska-Lincoln, USA
E-mail: {choueiry,Ixu}@cse.unl.edu

Abstract. Dechter et al. [5] proposed solving the Temporal Constraint Satisfaction Problem (TCSP) by modeling it as a meta-
CSP, which is a finite CSP with a unique global constraint. The size of this global constraint is exponential in the number of time
points in the original TCSP, and generalized-arc consistency is equivalent to finding the minimal network of the TCSP, which is
NP-hard. We introduce AAC, an efficient consistency algorithm for filtering the meta-CSP. This algorithm significantly reduces
the domains of the variables of the meta-CSP without guaranteeing arc-consistency. We use AAC as a preprocessing step to
solving the meta-CSP. We show experimentally that it dramatically reduces the size of a meta-CSP and significantly enhances
the performance of search for finding the minimal network of the corresponding TCSP.

Keywords: Constraint temporal networks, consistency algorithm

1. Introduction

In this paper we study constraint propagation in net-
works of metric temporal constraints, which are an es-
sential tool for building systems that reason about time
and actions. These networks model events and their
relationships (as distances between events), and pro-
vide the means to specify the temporal elements of an
episode with a temporal extent. Examples of such an
episode are as diverse as a story, a discourse, a man-
ufacturing process, the measurements executed by the
Hubble space telescope, the activities of a robot, or the
scheduling of a summer vacation. The ability to ef-
ficiently process temporal networks is a pre-requisite
for enabling computers to support human users in de-
cision making and to automate the planning and ex-
ecution of complex engineering tasks. This paper de-
scribes an efficient consistency algorithm for the meta-
CSP modeling the Temporal Constraint Satisfaction
Problem (TCSP) [5].

A major research effort in the Constraint Process-
ing community is the development of efficient filter-
ing algorithms. These algorithms propagate the con-
straints in a problem in order to reduce its size and
enhance the performance of the algorithms used for

*Corresponding author. B.Y. Choueiry, 256 Avery Hall, Lincoln,
NE, 68588-0115, USA.

solving it. Although particularly simple at the con-
ceptual level, the basic mechanism for ensuring arc-
consistency (AC) [7,8,12] has witnessed several refine-
ments [1,2,6,9] and remains the subject of intensive re-
search [3,15]. The unusual attention to a mechanism
executable in polynomial time is justified by the fact
that this simple mechanism is at the heart of many pro-
cedures for solving CSPs.

To the best of our knowledge, the only work reported
in the literature on applying consistency algorithms to
the meta-CSP is a study by Schwalb and Dechter [11],
which we discuss in Section 3.3. Shortly stated, the
above study changes the end points of the temporal in-
tervals. In contrast, our approach considers each inter-
val as an atomic value, which is either kept or removed,
but whose extent is never modified.

In this paper we argue that arc-consistency of the
meta-CSP is NP-hard. We define the property of Aarc-
consistency of the meta-CSP and propose an effi-
cient algorithm, AAC, for achieving it. This algorithm,
which guarantees Aarc-consistency of the meta-CSP
but, not its arc-consistency, drastically reduces the size
of the meta-CSP and enhances the performance of the
search process used for solving it. While the basic idea
behind our filtering algorithm is simple, the value of
our contribution lies in the design of polynomial-time
and space data-structures, reminiscent of AC-4 [9] and
AC-2001 [3] for general CSPs, that make the algo-

0921-7126/04/$17.00 © 2004 — IOS Press and the authors. All rights reserved

214 B.Y. Choueiry and L. Xu / An efficient consistency algorithm for the TCSP

rithm particularly efficient and perhaps even optimal
for achieving the property of Aarc-consistency. Note
that optimality still needs to be formally established.
This paper is structured as follows. Section 2 intro-
duces our notation, the task we address and its com-
plexity. Section 3 introduces the concept of the AAC-
consistency of the meta-CSP and the algorithm for
achieving it. Section 4 describes our experiments and
observations. Finally, Section 5 concludes this paper.

2. Background

We first define formally the temporal constraint
problems addressed.

2.1. STP and TCSP

A Simple Temporal Problem (STP) is defined by a
graph G = (V, E,I), where V is a set of vertices ¢;
representing time points, F is a set of directed edges
e; j representing constraints between two time points
t; and t;, and I is a set of constraint labels for the
edges (see Fig. 1). A constraint label I; ; of edge e; ;
is a unique interval [a, b], a and b € R, and denotes
a constraint of bounded difference a < t; — t;) < b.
We assume that there is at most one constraint between
any two vertices ¢; and ¢; and that the constraint e; ;
labeled [a, b] can also be referred to as the constraint
ej; labeled [—b, —a].

A Temporal Constraint Satisfaction Problem (TCSP)
is defined by a similar graph G = (V, E, I), where
each edge label Ii,j = {l}j, lfj, R lfj} is a set of dis-
joint intervals denoting a disjunction of constraints of
bounded differences between ¢; and ¢ (see Fig. 2). We
assume that the intervals in a label are given in a canon-
ical form in which all intervals are pair-wise disjoint,

I; ={[3.51,16,9], ..}

Fig. 2. TCSP.

and that they are sorted in an increasing order of their
end points. The superscript k of interval lf- denotes the
position of the interval in the domain. This ordering
scheme is important for the specification of our algo-
rithm.

Solving a temporal constraint network corresponds
to assigning a value to each time point all the con-
straints are simultaneously satisfied. Finding the equiv-
alent minimal network can be accomplished by remov-
ing from the edge labels the values that do not par-
ticipate in any solution. Solving an STP and finding
its minimal network can be done in polynomial time.
For example, the Floyd-Warshall algorithm for com-
puting all pairs shortest paths computes the minimal
network in ©(n3), where n is the number of nodes,
or time points, in the network. Solving the TCSP is
NP-complete and finding its minimal network is NP-
hard [5].

2.2. The meta-CSP

Dechter et al. [5] described a backtrack search pro-
cedure for determining the consistency of the TCSP.
To this end, the TCSP is expressed as a “meta” Con-
straint Satisfaction Problem (CSP), or meta-CSP. The
variables of the meta-CSP are the edges e;; of G.
Their number |E| depends on the density of the tem-
poral graph and may reach n(n — 1)/2, where n is the
number of nodes in the TCSP. The domain of a vari-
able €ij> denoted Domain(e;,j), is its label, Ii,j =
{l}j,lfj, .. .,lfj}. The size of the meta-CSP, defined
as the product of the domain sizes of its variables
e, jepl|lijl, is kIE|. A variable-value pair is a tuple
of a variable and a value from its domain. The only
constraint in the meta-CSP is a global constraint that
requires the variable-value pairs (vvps) {(e; j, llhj)} for
all the variables ¢; ; € G to form a consistent STP.
The size of this constraint (i.e., number of possible tu-
ples) is k|E|; it can reach k"™—1D/2 and is exponen-
tial in the number of time points in the TCSP. Solving
the meta-CSP corresponds to assigning one interval to
each edge from its label such that the resulting tem-
poral network forms a consistent STP. The backtrack
search proposed by Dechter et al. [5] for solving the
meta-CSP requires checking the consistency of an STP
at every node in the search, each of which is om3).
Its complexity is thus O(n? kIEl). The consistency of
the TCSP can be determined by finding a solution to
the meta-CSP; and finding the minimal network of the
TCSP can be achieved by finding all the minimal STP
networks that are solutions of the meta-CSP [5].

B.Y. Choueiry and L. Xu / An efficient consistency algorithm for the TCSP 215

2.3. Consistency of the meta-CSP

The only constraint in the meta-CSP is a global con-
straint. The application of generalized arc-consistency
to this constraint requires finding all its tuples [10].
Finding the constraint definition is hence equivalent to
finding all the solutions of the meta-CSP, which is NP-
hard [5]. Thus, running a generalized arc-consistency
algorithm on the meta-CSP is prohibitively expensive.

Proposition 2.1. Generalized arc-consistency on the
meta-CSP is NP-hard.

We propose to reduce the size of the meta-CSP by
considering a ternary constraint between every three
nodes of the meta-CSP forming a triangle in the graph
of the TCSP, and applying an efficient generalized
arc-consistency algorithms, which we call AAC, to
these ternary constraints (see Fig. 3). The complex-
ity of AAC is O(degree(G) - |E| - k¥) = O(n|E|k?),
where degree(G) denotes the largest number of edges
incident to any vertex in G. Again, the AAC algo-
rithm achieves Aarc-consistency of the meta-CSP, but
does not guarantee that the resulting meta-CSP is arc-
consistent. However, it provides an efficient way to re-
duce its size.

In order to demonstrate the effectiveness of our ap-
proach, we test and report the performance of AAC
as a preprocessing step to search, showing a dramatic
reduction in the size of the meta-CSP. We also report
the performance improvement of the backtrack search
for solving the meta-CSP with and without this pre-
processing in terms of CPU time and number of con-
straint checks CC.

(D Variable of meta—CSP
[Constraint

Fig. 3. Left: Meta-CSP with a global constraint. Right: with ternary
constraints.

3. The filtering algorithm

We approximate the generalized arc-consistency of
the meta-CSP by replacing the unique global constraint
with a ternary constraint Ale; ;, €; k., €] among every
variable e; ;, €; i, and e; ;. of the meta-CSP that forms
an existing triangle in the temporal network G. Below,
we define the Aarc-consistency property as the gener-
alized arc-consistency of this constraint and describe
the AAC algorithm to achieve it.

3.1. Aarc-consistency

An STP can be solved by computing the transitive
closure under composition and intersection of the in-
tervals of its edges. The transitive closure of an STP
results in a complete temporal graph.

The composition l;, = l;j oL, of the intervals [;; =
[a, b] and ljk = [c, d] labeling the respective edges e; ;
and e i, is a new interval [;;, = [a + ¢, b + d] labeling
the edge ¢; 1.

The intersection Iy, = 1, NI of the inter-
vals I/, = [a,b] and I} = [c,d] labeling the
respective e, and e, is a new interval Iy =
[maximum(a, c), minimum(b, d)] labeling the edge ¢; ..

We use the above two operations to define the prop-
erty of AAC of a meta-CSP. For each triangle ijk con-
necting the distinct time points %;, iy, and tj in the
original temporal network, we define a ternary con-
straint in the meta-CSP Ale; j, €; ., €; x]. Given three
variable-value pairs (€; ;, l;7), (€; k. lix), and (e; , L)
of the meta-CSP, we say that the labeled triangle
Al(e; 5, Lig), (€5 ks Lik), (€ k> Ljx)] s a consistent trian-
gle if and only if (;; o ;) N I;, # 0. Figure 4 shows
a consistent triangle A[(ei,j, [3,5D), (e k> [4,9D), (€5 ks
[2,6])]. We also say that each variable-value pair in the
triangle is supported by the two other variable-value
pairs. We introduce the following three definitions:

1. The ternary constraint Ale; j, €; g, €] is AAC
relative to the meta-CSP variable e; ; if and only
if for every interval lfj € Domain(e; ;) there ex-

ists an interval l%’k € Domain(e;) and an inter-
val lij € Domain(ey ;) such that (lfk o lzj) N

i £ 0.

(OVariable of meta-CSP
O Ternary constraint

€k

Fig. 4. A consistent triangle.

216 B.Y. Choueiry and L. Xu / An efficient consistency algorithm for the TCSP

First—support(((ei,j, ij), ijk))
tiji < Supported-by(((e;j,l; 1), ijk))
Iftijk: =nil
Thenr «— 1,5 — 0
Else let t; . be of
the form Al(e; 5, 135), (€4 k- 1)), (€ ks l;k)]
r «— position of l;k in [Domain(e; i)l
s «— position of l;’k in \Domain(ej’k)|
For m from (s + 1) to |Domain(ejyk)\
When (I}, o l;’l’f’) Nl
Return A[(ei’j, l”), (ei’k, l:k)’ (6j,k’ l;']i)]
When r # |Domain(e; ;)|
For n from (r + 1) to [Domain(e; t,)|
For t from 1 to \Domain(ej’k)|
t ..
When (I}, o ljk) Nl
Return Al(e; ;. 1) (e k. 173). (€ k. 15,
Return nil

Fig. 5. First-support.

2. The ternary constraint Ale; j, €; g, €5 1] is AAC
if and only if it is AAC relative to the variables
€ij» €i k- and e; k.

3. Finally, the meta-CSP is AAC if and only if all
its ternary constraints are AAC.

We identify all the existing triangles in the temporal
network and replace each of them by a ternary triangle
constraint. The number of these new constraints is in
O(degree(G) - |E|) = O(n|E|), and the size of each
constraint is at most k.

3.2. AAC algorithm

The AAC algorithm, shown in Fig. 7, removes the
intervals in the domain of an e;; that do not have a
support in any triangle in which e; ; appears in the
temporal graph. It implements mechanisms for consis-
tency checking that are reminiscent of AC-4 [9] and
AC-2001 [3] in that it tries to optimize the effort for
consistency checking. It uses the procedures First-
support of Fig. 5 and Initialize-support of
Fig. 6. The Push and Delete operations we use are
destructive stack operations.

AAC operates by looking at every combination of a
vvp (e;,4,;;) and the triangles ijk in which it appears,
denoted ((e; ;.l;j), ijk). The support of ((e; ;. 1),
ijk) is the first element in the domains of e; ;. and e; j,
that yields a consistent triangle. (Note that domains are
and variables are ordered canonically.) Intervals in the
domain of a variable that are not supported in any tri-
angle are removed from the domain. When an interval
is removed, some vvps may lose their support. AAC

Initialize-support(G)
Support-by, Supports: two empty hash-tables
Q «— {(e,5,135)}, setof all vvps in the meta-CSP
Q' —nil
Consistency «— true
While nonempty(Q) A Consistency do
(€45, 1i5) «— Pop(Q)
Forall £ such that 5k is a subgraph of G do
tijk — Alleg 5. lij) (e ks Lik)s (€ ks Lig)]
— First—support(((ei’j, lij),ijk))
If tt]k
Then Supported—by[(ei’j,lij), ijk] — Lijk
Push((ei,j,lij,ijkx Supports((e; k. lix)])
Push((ei’j,lij,ij@, Supports((e; k. Ljx)D)
Else Domain(e; ;) « Domain(e; ;)\ {l;;}
Push((ei’j, l”), Q/)
When Domain(e; ;) = 1]
Then Consistency «— false
Return Q’, Supported-by, Supports, Consistency

Fig. 6. Initialize-support.

tries to find the next acceptable support. The process
is repeated until all vvps have a valid support in every
relevant triangle.

We use a hash-table Supported-by to keep track
of the support of each vvp (e;;,l;;) in a triangle
ijk. A key in this hash-table is a tuple ((e;;,l;;),
ijk); its value is a consistent triangle A[(ei,j,lij),
(€i ks LK), (€ k> Ljx)]. The size of Supported-by is
O(|E|k degree(G)).

We also use a hash-table Supports to keep track
of what a given vvp supports in Supported-by. The
key is a vvp (e; j,l;;), and the value is a list of the
keys of Supported-by that this vvp supports. By
construction, Supports has O(| E|k) keys and a total
of O(|E|k degree(G)) elements.

Initialize-support initializes hash-tables. It
returns these data structures, the list Q' of vvps deleted
from the domains of the meta-CSP at the initializa-
tion step, and a boolean variable indicating whether
the meta-CSP was already found inconsistent. AAC,
shown in Fig. 7, iterates over the vvps that have been
deleted and retracts them from supporting entries in
Supported-by.

We can prove that AAC terminates, does not re-
move any consistent intervals (i.e., is sound), and is in
O(degree(G)|E|k?) = O(n|E|E>).

3.3. Discussion
Note that we do not add any edges to the network

of the TCSP to triangulate it or to make it a com-
plete graph. Such an effort would be useless for the

B.Y. Choueiry and L. Xu / An efficient consistency algorithm for the TCSP 217

NAC(G)
Q
Supported-by
Supports
Consistency < Initialize-support(G)
While nonempty(Q)) A Consistency do
(€; 1> lix) < Pop(Q)
Forall (ei’j,lij,ijk> € supportsl(e; k. l;x)])
Lijk — Olleg . 1) (€ ks Lig), (€5 k- Lig)]

« Supported-by({(e; j, l;;), ijk))
Delete({(e; j,l;j). ijk), Supportsl(e; k. l;x)])
Delete(((ei’j, i), ijk), Supportsl(e; g, L))
tip — Ol g lig) (g g L) (e g 1))

— First—support(((@i’j, lij), i7k))

If e

ijk

Then Supported-byl(e; ;. lij), i7k] — t;’jk-
Push({e; j,1i;, ijk), Supports((e; k. l;’k-)])
Push((ei,j,lij,ijk% Supportsl(e; k. l;.k)])

Else Domain(e; ;) < Domain(e; ;) \ {l;;}
Push((e; 5. ij). Q)
When Domain(e; ;) = 1]

Then Consistency < false
Return {Domain(e; ;)}

Fig. 7. AAC.

(—DVariable of meta—CSP

O Variable of TCSP
] Constraint

Fig. 8. Left: Meta-CSP with ternary constraints. Right: TCSP.

sake of achieving AAC. Indeed, two time points that
are not connected in the graph of the TCSP (e.g.,
tm and t; in Fig. 8) are considered to be linked by
a universal constraint, which is an edge labeled by
{(—00,0)}. Finally (—oc0,00) is an absorbing ele-
ment for the composition operation, and its intersection
with any other interval is never empty. Consequently,
the ternary constraint Ale; ;, €; . €5,] is necessarily
AAC, and none of the intervals in the labels of e; g,
€;,m» O €j , can be removed. In particular, the label
of e; , remains {(—oo, c0)}.

AAC is a generalized arc-consistency algorithm
for the ternary constraints of the meta-CSP (Fig. 8,
left). According to the definition of path-consistency in

quantitative temporal networks given by Dechter in [4],
AAC can also be viewed as a weak path-consistency
algorithm for the original TCSP (Fig. 8, right). It is
weak in that does not modify the intervals labeling the
edges of the TCSP. In the above example, this is illus-
trated by the fact that the interval in the label of e; , is
not tightened.

Of course, the existence of an edge between t; and
t; and between t; and iy, restrains the labeling of the
edge between t; and t,,. However, inferring this re-
sulting constraint is beyond AAC and can be achieved
by path-consistency, which is a stronger property than
AAC.

The only consistency algorithms for temporal net-
works that we are aware of are NPC-1 and NPC-2
(numerical PC algorithms) of Dechter [4] and ULT
(Upper-Lower Tightening algorithm) and LPC (Loose
Path-Consistency) of Schwalb and Dechter [11]. These
algorithms aim to achieve path consistency of the
TCSP and may modify the intervals in the label of an
edge. Given the disjunctive intervals of the labels of the
TCSP, NPC-1 and NPC-2 may cause a fragmentation
problem, which increases the number of intervals per
label in the TCSP and increases the size of the result-
ing meta-CSP. Schwalb and Dechter introduced ULT
and LPC to avoid this fragmentation problem [11].
These algorithms approximate full path-consistency of
the TCSP.

Our approach differs from NPC-1, NPC-2, ULT,
and LPC in that we do not modify any interval labeling
an edge in the TCSP: we either keep the interval or re-
move it. We consider each interval as an atomic value
in the domain of a variable of the meta-CSP. Our goal
is to remove inconsistent individual intervals from the
labels, not to tighten these intervals. Tightening the in-
tervals may not terminate in the general case and may
be prohibitively expensive in the integral case.

4. Experimental results

We conducted empirical evaluations on randomly
generated TCSPs. Below we describe our random gen-
erator, the characteristics of the experiments we con-
ducted, and our observations.

4.1. Random generator

We designed a generator of random TCSP instances
that guarantees that the temporal network is connected
and that a specified percentage of the generated in-
stances is solvable. Our generator is designed as fol-
lows. It takes as input:

218 B.Y. Choueiry and L. Xu / An efficient consistency algorithm for the TCSP

— The number of nodes n in the temporal network,
which is the number of time points in the TCSP.

— The density d of temporal graph G. This deter-
mines the number of edges |E| in the temporal
graph. Naturally, |E| < n(n — 1)/2.

— The maximal number of intervals in the label of
an edge k. The actual number of intervals per la-
bel is chosen randomly in a uniform manner be-
tween 1 and k.

— The range of the nodes selected from R = [1, 7],
with r € N.

— The percentage p. of solvable problems.

We generate a random TCSP example according to the
steps below:

1. We select values in R to correspond to positions
of time points in this interval. We enforce that the
first node of the graph has position 1, and the last
node in the graph has position . Then we select
randomly (n — 2) distinct points within the given
interval R, excluding the extremities of R.

2. We use the n(n — 1)/2 combinations of two time
points ¢; and ¢; (with ¢; < t;) generated above to
generate a list L of edges e; ;. Then we build the
list E of edges by edges randomly selecting |E|
edges from L.

3. Measuring the distance 6 = (t; — t;) for each
edge e; j in E, we label e; ; with a random num-
ber of intervals in [1, k] while ensuring that there
is at least one interval [a, b] such that § € [a, b].
This ensures that the resulting TCSP has a solu-
tion.

4. With probability (1 — p.), we swap the labels of
two random edges in the graph.

5. Finally, we test the graph for connectivity and
discard the unconnected graphs.

4.2. Experiments conducted

We tested AAC on the randomly generated con-
nected problems of Table 1. Our generator guarantees
that at least 80% of these problems have at least one
solution. We average the results over 100 samples.

In order to demonstrate the filtering power of AAC,
the comparison of the average size of the meta-CSP
before and after filtering is shown in Fig. 9 for TCSP I
and Fig. 10 for TCSP II. The numerical values reported
in Table 2 and Table 3.

In order to demonstrate the advantages of AAC, we
report the cost of finding all the solutions of the meta-
CSP with and without this preprocessing. To solve the

Table 1
Problems tested (100 samples per point)
n k Density |E|
Range Step Range
TCSP1 8 [1, 5] [0.02, 0.1] 0.02 [7,9]
[1,5] [0.2,0.9] 0.10 [11,26]
TCSP1I 20 [L, 5] [0.02,0.1] 0.02 [22, 36]
20 [1,5] [0.2,0.9] 0.10 [53, 173]
N ——before running AAC
L 0B+15 —=—after running AAC
g - == number of solutions
A L 0E+l2
|
=
8 1. 0E+09
O
~
()
501, 0E+06
"
:
-
1. 0E+03 . Density
a..,_“.. ‘_____.___'.\
1. OEI00 . e T ‘
: 0.0 0.2 0. 0.6 0. L0

Fig. 9. Reduction of problem size of TCSP I.

L OE+110

1. OE+100 —s—before running AAC

1. 0E+90 —=—after running AAC

Q

21 0E+80

oL

§ LOE70

3 1.0E60 |

S 1

o

& 1.0E+50

Q

E 1.0E+40

O 1,0E+30 -

=
1.08+20 | Density
1.OE+10 - -
1. 0E+00 | T — - — |
. 0.0 0.2 0.1 0.6 0.8 Lo

Fig. 10. Reduction of problem size of TCSP II.

meta-CSP we use the basic chronological backtrack
search described in [5]. This search process requires
solving an STP at each node expansion. To this end, we
use the Directional Path-Consistency algorithm DPC of
Dechter [4]. In our experiments, DPC is significantly
more efficient than the Floyd-Warshall algorithm in de-
termining the consistency of the STP (although it does
not necessarily yield the minimal STP) [13].

Figure 9 also shows the number of the solutions of
the meta-CSP for TCSP 1. We do not show this num-
ber in Fig. 10 because the meta-CSP corresponding to
TCSP 1I is large and finding all its solutions is pro-
hibitively expensive.

B.Y. Choueiry and L. Xu / An efficient consistency algorithm for the TCSP 219

Table 2
Performance of AAC on TCSP 1
Graph Number of Size of meta-CSP Number Cost of search Cost of search Cost of AAC
density variables of solutions ~ without AAC with AAC
in meta-CSP Original Filtered CPU [s] cC CPU [s] ccC CPU [s] ccC
0.02 7 16702 16701.67 16701.67 13.60 518463.7 13.62 518463.7 5.00E-04 0
0.04 8 58448 40831.72 4176.91 21.60 843112.7 17.86 712777.8 0.0011 55.53
0.06 8 64780 48399.24 4837.69 25.03 965354.3 22.02 868557.0 0.0012 50.98
0.08 9 282427 142638.28 1437.01 24.23 1008288.4 18.14 782634.6 0.0022 122.70
0.1 9 271254 132758.27 1331.86 26.08 1103695.6 17.83 793677.7 0.0017 134.14
0.2 11 4257366 653949.00 105.88 23.95 1105540.5 6.43 335393.7 0.0033 324.44
0.3 13 6.81E4+07 2424326.70 20.02 16.32 866010.3 2.10 117963.1 0.0050 575.80
0.4 15 1.10E+09 1117395.50 5.97 22.13 1320010.5 0.49 29187.1 0.0075 880.23
0.5 18 6.64E+410 62.07 2.40 26.11 1630835.2 0.07 3654.7 0.0115 1383.80
0.6 20 1.06E+12 33.21 2.35 29.25 1932359.2 0.07 3821.0 0.0150 1711.11
0.7 22 1.61E+13 31.16 2.19 34.87 2297002.5 0.08 3607.9 0.0192 2059.18
0.8 24 2.74E+14 2.41 1.66 57.13 3946315.0 0.07 3226.7 0.0217 2393.20
0.9 26 5.23E+15 2.48 1.60 74.39 5128653.0 0.08 3851.7 0.0262 2839.48
Table 3
Performance of AAC on TCSP II
Graph Number of variable Size of meta-CSP Cost of AAC
density in meta-CSP Original Filtered CPU [s] cc
0.02 22 1.51E+13 9.31E+12 4.10E-03 86
0.04 26 4.16E+15 1.05SE+15 0.006 253
0.06 29 2.97E+17 5.66E+416 0.008 362
0.08 33 7.27E+19 3.94E+18 0.011 558
0.1 36 4.45E+21 1.72E+19 0.014 811
0.2 53 7.86E+31 1.11E+422 0.036 2581
0.3 70 2.00E+42 1.48E+-08 0.072 5268
0.4 87 2.23E+52 1545.05 0.114 8047
0.5 105 2.62E+62 79.69 0.168 11324
0.6 122 1.96E+73 60.20 0.254 15446
0.7 139 1.90E+83 37.11 0.332 20522
0.8 156 6.46E+93 23.55 0.433 26050
0.9 173 1.88E+104 24.60 0.554 33139

The results of solving the meta-CSP in terms of CPU
time and constraint checks CC for TCSP I are shown in
Figs 11 and 12, and the numerical values are reported
in Table 2. In this table, we also report the cost of run-
ning AAC, although it is already included in the cost
of search in order to demonstrate that the overhead due
to filtering is practically negligible.

4.3. Observations

The comparison of Figs 9 and 10 shows that the
pruning power of AAC increases with the density of
the TCSP. It also shows that AAC dramatically reduces

the size of the meta-CSP especially when density is
high. Further, Fig. 9 shows that the size of meta-CSP
obtained after filtering by AAC is close to the number
of solutions for high-density networks. Both behaviors
are typical of consistency filtering techniques used as a
preprocessing step to search.

Figures 11 and 12 show the cost of finding all the so-
lutions of the meta-CSP, with and without preprocess-
ing with AAC, in terms of constraint checks and CPU
time, respectively. The figures show that preprocess-
ing does not negatively affect the cost of search un-
der low density and is tremendously effective in reduc-
ing the total cost under high density. Indeed, the cost
of search is almost negligible when density is high.

220 B.Y. Choueiry and L. Xu / An efficient consistency algorithm for the TCSP

6. 0E+06 —+— BT-TCSP without AAC
- @- BT-TCSP with AAC

B 4.0E408 -
3]
@
=
S
+ 3.0E+06
=]
)
o
H
h 208408
]
]
[}

1. 0E+06

. Densit
_ ensity
0. DE+00 1 R D D I

0 0.1 02 03 04 05 06 07 08 0.9 1

Fig. 11. Constraint checks for finding all solutions of the meta-CSP
corresponding to TCSP 1.

80 -

-a
=]
T

—+—BT-TCSP without AAC
- =- BI-TCSP with AAC

@
=1

Y o
=] =

CPU time (s)

S Density

0 L . ““"'-n.....«..............-...... J

(1] 0.1 0.2 0.3 0.4 0.8 0.6 0.7 0.8 0.9 1

Fig. 12. CPU time for finding all solutions of the meta-CSP corre-
sponding TCSP 1.

In contrast, search without preprocessing with AAC is
prohibitively expensive when density is high.

When density is low, the temporal graph has few
edges; hence the meta-CSP has relatively few vari-
ables and its size is small. When density increases, the
number of edges in the temporal graph, and hence the
number of variables in the meta-CSP, increases expo-
nentially. However, this increases the number of tri-
angles in the temporal graph and enhances the filter-
ing power of AAC, which removes most intervals. In
all cases, the experiments strongly support using AAC
when solving a TCSP.

Moreover, the use of AAC seems to uncover the ex-
istence of a phase transition around a density value of
0.09. The existence of a phase transition in solving the
TCSP was already noted in [11,14] but deserves more
thorough investigation.

5. Conclusions

From the experimental results reported in the previ-
ous section, we draw the following conclusions:

1. AAC can dramatically reduce the size of the
meta-CSP, especially when density is high. Hence
it helps to improve the performance of the back-
track search to solve the meta-CSP.

2. The cost of AAC is negligible compared with the
cost of the search for solving the meta-CSP.

This establishes that the AAC is a cheap and effec-
tive consistency algorithm and should become part of
any standard preprocessing technique for solving the
TCSP.

One interesting direction for future research is to in-
tegrate AAC in a look-ahead strategy for solving the
TCSP. Another research direction is to use AAC to
improve the performance of the ULT and LPC algo-
rithms of Schwalb and Dechter [11] since the two ap-
proaches are orthogonal and, to the best of our knowl-
edge, the only efficient consistency filtering techniques
for TCSPs reported in the literature.

Acknowledgements

This work is supported by a NASA-Nebraska grant
and the CAREER Award #0133568 from the National
Science Foundation. We are indebted to the anony-
mous reviewers for their comments, which helped us
improve our presentation.

References

[1] C. Bessiere, Arc-consistency and arc-consistency again, Artifi-
cial Intelligence 65(1) (1994), 179-190.

[2] C. Bessiere, E.C. Freuder and J.-C. Régin, Using constraint
metaknowledge to reduce arc consistency computation, Artifi-
cial Intelligence 107(1) (1999), 125-148.

C. Bessiere and J.-C. Régin, Refining the basic constraint prop-
agation algorithm, in: Proc. of the 17th IJCAI, 2001, pp. 309-
315.

[4] R. Dechter, Constraint Processing, Morgan Kaufmann, 2003.

)
=

[5] R. Dechter, I. Meiri and J. Pearl, Temporal constraint networks,
Artificial Intelligence 49(1-3) (1991), 61-95.

Y. Deville and P. Van Hentenryck, An efficient arc consistency
algorithm for a class of CSP problems, in: Proc. of the 12th
IJCAI, 1991, pp. 325-330.

A.K. Mackworth, Consistency in networks of relations, Artifi-
cial Intelligence 8(1) (1977), 99-118.

A.K. Mackworth and E.C. Freuder, The complexity of some
polynomial network consistency algorithms for constraint sat-
isfaction problems, Artificial Intelligence 25(1) (1984), 65-74.
R. Mohr and T.C. Henderson, Arc and path consistency revis-
ited, Artificial Intelligence 28(2) (1986), 225-233.

[6

[7

—

[8

—

[9

—

[10]

[11]

[12]

[13]

B.Y. Choueiry and L. Xu / An efficient consistency algorithm for the TCSP 221

R. Mohr and G. Masini, Good old discrete relaxation, in: Eu-
ropean Conference on Artificial Intelligence (ECAI-88), 1988,
pp. 651-656.

E. Schwalb and R. Dechter, Processing disjunctions in tempo-
ral constraint networks, Artificial Intelligence 93(1-2) (1997),
29-61.

D. Waltz, Understanding line drawings with scenes with shad-
ows, in: The Psychology of Computer Vision, PH. Winston, ed.,
McGraw-Hill, Inc., 1975, pp. 19-91.

L. Xu and B.Y. Choueiry, A new efficient algorithm for solv-
ing the simple temporal problem, in: /0th International Sym-

posium on Temporal Representation and Reasoning and Fourth
International Conference on Temporal Logic (TIME-ICTL 03),
IEEE Computer Society Press, 2003, pp. 212-222.

[14] L. Xu and B.Y. Choueiry, Improving backtrack search for solv-
ing the TCSP, in: Principles and Practice of Constraint Pro-
gramming (CP 03), LNCS 2833, Springer, 2003, pp. 754-768.

[15] Y. Zhang and R.H.C. Yap, Making AC-3 an optimal algorithm,
in: Proc. of the 17th IJCAI, 2001, pp. 316-321.

