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Introduction

We present a Java applet that uses Constraint Process-
ing (CP) to assist a human in playing the popular game
Minesweeper. Our goal is to illustrate the power of CP
techniques to model and solve combinatorial problems
in a context accessible to the general public.

Minesweeper is a video game that has been included
with Microsoft Windows since 1989. In this game, the
player is presented with a grid of squares. Each of
these squares may conceal a mine. When the player
clicks on a square, it is revealed. If the square is a
mine, the game is over. If the square is not a mine,
it is replaced by a number indicating how many of the
adjacent squares are mines. The goal of the game is
to reveal all squares that are not mines. These sim-
ple rules yield a complex problem: Kaye proved that
the minesweeper-consistency problem is NP-complete
(2000). The minesweeper-consistency problem is to de-
termine if, given a board with some known squares,
there exists a layout of mines in the unknown squares
that is consistent with the numbers displayed.

A few programs have been written to solve
Minesweeper. One notable such program was devel-
oped by Collet (2004), and uses the Oz language to
model and solve Minesweeper as a set of Boolean lin-
ear constraints. In his implementation, Collet defines
constraints intensionally and generates dual variables
to achieve higher-level consistency1. This model arti-
ficially and unnecessarily increases the number of vari-
ables (thus increasing the cost in terms of time and
space), and obscures the concept of ‘consistency level,’
which is central to Constraint Processing.

Like (Collet 2004), our program assists the player in
solving Minesweeper puzzles by modeling them as Con-
straint Satisfaction Problems (CSPs). Although our
model is similar to that of Collet, it was developed in-
dependently. Also, our constraints are defined in exten-
sion, and, importantly, our implementation uses text-
book propagation-algorithms to determine the locations
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1Collet also generates all solutions (while exploiting sym-
metries) and infers the probability that a square is mined.
We have not yet considered these extensions.

of mines, thus better serving our pedagogical goals.
We briefly discuss our motivations, then describe our

model, interface and implementation.

Motivation: an educational tool
The primary motivation for developing this application
is to use it as an educational tool. At the University
of Nebraska-Lincoln, Constraint Processing is taught in
two introductory courses offered every year (Introduc-
tion to Artificial Intelligence and Foundations of Con-
straint Processing), and one advanced course offered
every 2 years (Recent Advances in Constraint Process-
ing). This application is being used to help students vi-
sualize and understand modeling with constraints and
the mechanisms of constraint propagation.

Many students are familiar with Minesweeper and
likely already have an intuition about how to solve it.
With this application, we can help them demystify their
intuitions about puzzle solving and relate these intu-
itions to the more formal concept of consistency level.

CSP model
In our CSP model for Minesweeper, we generate a
Boolean variable for every square on the board with
the two possible values mined and safe. We generate
a constraint for every revealed square on the board,
whose scope is the set of squares adjacent to the re-
vealed square, see Figure 1. This is a “sum” constraint

Sum = 2

Sum = 3

Figure 1: CSP model.

that specifies the total number of mines in the adja-
cent squares. For example, a square labeled 3 yields a
constraint stating that the square be surrounded by 3
mines. All constraints are defined in extension, that is
by enumerating the set of allowed assignments. While
this representation requires storing constraints of up to
70 tuples, it allows us to perform higher of levels consis-
tency by simple constraint composition (Dechter 2003).



Interface

Our interface (see Figure 2) implements Minesweeper
using the same rules as the version that comes with Mi-
crosoft Windows. The player can click on a square to

Figure 2: Interface.

reveal it, or right-click on a square to mark it as a mine.
The player can choose one of three difficulty levels cor-
responding to different board sizes and mine densities.
The player can also create a custom-size board. In addi-
tion to the basic features, we can also load a predefined
board configuration from an XML file, which allows us
to test specific configurations of interest.

Our interface has buttons to activate the various
constraint-based ‘assistants.’ These buttons are GAC,
2-RC, and 3-RC. Pressing the GAC-button launches
the Generalized Arc Consistency (GAC) algorithm
(Mohr & Masini 1988) on the current state of the
game. This algorithm considers every constraint in-
dependently, and attempts to infer the values of the
unexplored squares in the scope of the constraint from
the values of the explored ones. If an explored square is
deemed to have exactly one possible value, it is imme-
diately flagged accordingly. In particular, if it is safe, a
new constraint is dynamically generated using the num-
ber revealed by the square. This process is similar to a
human player flagging and expanding squares that are
obviously mined or safe.

GAC is also called 1-Relational Consistency (RC),
because it looks at every constraint independently.
Higher levels of consistency, such as 2-RC and 3-RC,
look at combinations of constraints (Dechter 2003). 2-
RC (respectively, 3-RC) looks at every combination of 2
(respectively, 3) constraints with overlapping scopes. It
computes the join of these constraints to create the list
of consistent assignments, then filters accordingly the
domains of the corresponding variables. We choose not
to store the constraints generated by the consistency al-
gorithms for space consideration. The 2-RC and 3-RC

buttons enforce these levels of consistency in cascaded
manner, that is until no propagation can be done.

The display of the game board always reflects exactly
the state of the CP model. Thus, as constraints are
propagated, the player actually sees what is happening.
Because propagation can be too quick for a student to
observe, our application offers a single-step version for

each of the propagation algorithms. These buttons per-
form constraint propagation, but they stop as soon as
the solver either expands a safe square or flags a mine.
Using these buttons, the player can step through the al-
gorithms observing one change at a time. Because the
interface is not performing search by doing constraint
propagation, there is no concept of backtracking and
no need to undo propagations. Further, we are imple-
menting a preview mode that highlights the squares a
given algorithm will expand or flag before the propaga-
tion is actually executed in an effort to provide a visual
support to the actual operation of the algorithms.

Implementation

We implemented this application as a Java ap-
plet. This allows us to embed the program in
a web page, and make it publicly accessible at
consystlab.unl.edu/our work/minesweeper.html.

The architecture of the application is as follows.
There is a MineSweeperWindow object that handles all
of the display. This stores a MineField object that
manages the current game board. The last major ob-
ject is the RC object, which implements the constraint
propagation techniques described above. Note that our
solver does not store a separate copy of the variables.
Rather, it reads and writes directly to the MineField
object. This decision is intentional and allows our dis-
play to be continually updated as the solver proceeds.
Likewise, our solver is able to immediately take into ac-
count any flags or expansions performed by the player.

Conclusion

Our application implements the game of Minesweeper
and three different levels of consistency-enforcement
techniques. Our effort allows us to illustrate the concept
of constraint satisfaction and its related mechanisms of
constraint propagation in the context of an application
understandable to most people. As such, our program
is useful for explaining the significance and power of
Constraint Processing to students and also to the pub-
lic. In the future, we plan to expand the current imple-
mentation to illustrate more advanced concepts such as
tree-width and backbone variables.
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