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Abstract

Neighborhood Interchangeability (NI) identifies the equiva-
lent values in the domain of a variable of a Constraint Sat-
isfaction Problem (CSP) by considering only the constraints
that directly apply to the variable. Freuder described an al-
gorithm for efficiently computing NI values in binary CSPs.
In this paper, we show that the generalization of this algo-
rithm to non-binary CSPs is not straightforward, and intro-
duce an efficient algorithm for computing NI values in the
presence of non-binary constraints. Further, we show how to
interleave this mechanism with search for solving CSPs, thus
yielding adynamic bundlingstrategy. While the goal of dy-
namic bundling is to produce multiple robust solutions, we
empirically show that it does not increase (but significantly
decreases) the cost of search.

1 Introduction
Many problems in engineering, computer science, and man-
agement are naturally modeled as Constraint Satisfaction
Problems (CSPs), which are, in general, inNP-complete.
Solving these problems may require search. Symmetry has
been exploited to improve the performance of search at least
as far back as (Glaisher 1874); recently there has been a se-
ries of workshops on symmetry and CSPs (SymCon 2004).
Our study focuses on the discovery and use of approxi-
mate symmetries during search that yield multiple, robust
solutions. The symmetry relations we discuss are based on
the notions of local value interchangeability (Freuder 1991),
which group equivalent values of a variable in a bundle.
Bundling refers to the mechanism of assigning such a bun-
dle of values to a variable during search, yielding the gen-
eration of asolution bundle. A solution bundle is the set
of solutions in the Cartesian product of the assigned do-
main bundles. The primary goal of bundling is the gen-
eration of multiple robust solutions. It was incorrectly as-
sumed that static bundling (i.e., prior to search) and, a for-
tiori, dynamic bundling (i.e., during search), are too costly
and not worthwhile. Beckwith et al. (2001) and Choueiry
and Davis (2002) showed how to implement bundling at no
more cost than search without bundling. They established
theoretically this result for finding all solutions, and em-
pirically for finding one solution. They also showed that
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dynamic bundling yields significantly larger solution bun-
dles than static bundling while further reducing search cost.
However, their work was limited to binary CSPs.

In this paper we introduce an efficient technique for
bundling non-binary CSPs because the models of many real-
life problems may have non-binary constraints1. We demon-
strate the effectiveness of our technique on randomly gener-
ated problems in terms of the number of robust solutions
found (primary goal) and the reduction of search cost (for-
tunate side effect). Our contributions are as follows:

1. An algorithm for computing the NI values of a CSP vari-
able given a subset of the constraints defined on the vari-
able regardless of their arities.

2. The integration of this mechanism with backtrack search,
which we call dynamic bundling. And,

3. Experiments showing the benefits of dynamic bundling.

This paper is organized as follows. Section 2 states the
motivations and background of our work. Section 3 de-
scribes the computation of NI values in the presence of non-
binary constraints and its use in search with forward check-
ing. Section 4 reports our experiments and analysis. Finally,
Section 5 concludes this paper with directions for future re-
search.

2 Motivation and Background
Beckwith et al. studied dynamic bundling in the context of
binary CSPs (2001). They established that, when seeking
all solutions, the number of constraint checks and the num-
ber of nodes visited by dynamic bundling may never ex-
ceed the corresponding numbers of search without bundling.
Choueiry and Davis showed that those results hold empiri-
cally when seeking the first solution (2002). They concluded
that dynamic bundling (primarily used for finding multiple,
robust solutions) actually provides an effective means to im-
prove search performance, drastically abating the peak cost
of search at the phase transition. In Section 3.3 we ex-
plain this counter-intuitive result by the fact thatdynamic
bundling is capable of bundling no-goods, defined as partial

1The descriptions of workshops at IJCAI and ECAI on non-
binary constraints stated that: “more and more attention isbeing
paid to non binary constraints, mainly influenced by the growing
number of real-life applications.”



solutions that cannot yield complete solutions. Thus, dy-
namic bundling appears as a double-edged sword that not
only produces robust solutions but also reduces thrashing
during search.

Our goal here is to extend NI to non-binary CSPs and
to establish the benefits of dynamic bundling in this con-
text. In this paper we restrict ourselves to presenting the
methods and evaluating them on randomly generated prob-
lems. More generally, we believe that the extension of lo-
cal interchangeability to non-binary CSPs will be more use-
ful than the original binary approach, which was advanta-
geously used in case-based reasoning (Neagu and Faltings
2001) and local search (Petcu and Faltings 2003). Indeed,
in (Lal and Choueiry 2004), we used the ideas presented here
to design a novel query-join algorithm, reinforcing the im-
pact of CP techniques on Databases and revealing new ways
for supporting important functionalities in Databases such
as query-size estimation.

2.1 Constraint satisfaction problems
A Constraint Satisfaction Problem (CSP) is defined byP =
(V,D, C) whereV= {Vi} is a set of variables,D= {DVi

} the
set of their respective domains, andC a set of constraints that
restrict the acceptable combination of values for variables.
Solving a CSP requires assigning a value to each variable
such that all constraints are satisfied. The problem is inNP-
complete in general. Thescopeof a constraint is the set of
variables to which the constraint applies, and itsarity is the
size of this set. A constraint over the variablesVi, Vj, . . ., Vk

is a set of tuples, subset of the Cartesian product of the do-
mains of the variables in its scope:CVi,Vj,...,Vk

= {(〈Vi ai〉,
〈Vj aj〉, . . ., 〈Vk ak〉)} whereai ∈ DVi

and〈Vi ai〉 denotes
a variable-value pair (vvp). We denote by NEIGHBORS(Vi )
the set of variables that appear in the scope of the constraints
that apply toVi. We assume that the domains of the variables
are finite.

A CSP is often represented as a graph, or constraint net-
work, in which a node represents a variable and is labeled by
the corresponding domain. A non-binary constraint is repre-
sented as a hyper-edge linking the nodes in the scope of the
constraint. For sake of clarity, we represent a hyper-edge as
another type of node connected to the variables in the scope
of the constraint (see Figure 1 with the constraint given in
Table 1).
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Figure 1:CSP.

We use the following parameters to assess the worst-case
complexity of an algorithm applied to a CSP and for gener-
ating random instances:

• n number of variables,

Table 1:Constraint definitions.

C1 C2 C3 C4

V V1 V2 V V3 V2 V3 V4 V1 V4

1 1 3 1 3 1 2 1 1 1
1 3 3 2 3 1 2 2 2 2
2 1 3 3 2 2 2 1 3 1
2 3 3 4 2 2 2 2
3 1 1 4 2 3 1 1
3 2 2 6 1
4 1 1
4 2 2
5 3 2
6 3 2

• a maximum domain size,

• deg node degree,

• ck number of constraints of arityk,

• pk = ck/
(

n
k

)

constraint ratio of arityk, and

• t constraint tightness defined as the ratio of the number of
disallowed tuples over the number of all possible tuples.

CSPs are typically solved using depth-first search with
backtracking. In this paper, we use forward checking during
search (FC) and order the variables dynamically according
to the least domain heuristic. We denote the current variable
by Vc, the set of future variables (i.e., uninstantiated vari-
ables) byVf , and the set of past variables (i.e., instantiated
variables) byVp. At any point during search, the path from
the root of the tree to the current variable is a set of variable-
value pairs{〈Vi ai〉} for the variablesVi ∈ Vp and their
instantiationsai. Forward checking on non-binary CSPs re-
quires particular attention as we discuss in Section 3.2. As
stated above, ano-goodis any combination of variable-value
pairs that cannot be extended to a consistent solution.

The performance of search is empirically evaluated by
counting the number of constraint checks, the number of
nodes visited, and the CPU time. Empirical studies of the
performance of algorithms applied on CSPs are typically
conducted in the area of the phase transition where the cost
increases significantly around a critical value of an order pa-
rameter (Cheesemanet al. 1991).

2.2 Interchangeability & solution robustness
In its broadest sense, interchangeability allows one to re-
cover one solution to a CSP from another (Freuder 1991).
When solutions to a CSP are given, one can always define
a mapping between the solutions such that one solution can
be obtained from another without performing search. This
is calledfunctional interchangeability. Permutation of val-
ues across variables is called isomorphic interchangeability.
We address here another restricted form of interchangeabil-
ity: the interchangeability of values in the domain of a sin-
gle variable. When values in the domain of a given variable
are found interchangeable (i.e., equivalent), they can replace
each other as an assignment to the variable in any solution



to the CSP, thus yielding robust solutions (Ginsberget al.
1998; Choueiry and Davis 2002).

Definition 2.1 Neighborhood interchangeability (NI)
(Freuder (1991)):A valuea ∈ DV is neighborhood inter-
changeable with a valueb ∈ DV iff for every constraintC
onV , a andb are consistent with exactly the same values.

Algorithm 1 identifies the NI values for a variableV in
O(n · a2) by building a discrimination tree (DT) (Freuder
1991). Figure 3 shows DT(V2) for the CSP in Figure 2.

=

V2 

= V4
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==V3 
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Figure 2:A binary CSP.
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Figure 3:PartitioningDV2
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In this tree, the nodes represent variable-value pairs in the
neighborhood ofV2. Some nodes are annotated with values
from DV2

, these annotations form a partition ofDV2
. All

the variable-value pairs that appear in a path from the root
of the tree to an annotation are consistent with the values
appearing the annotation. It is important, in this procedure,
that variables and values be ordered in a canonical way (e.g.,
lexicographical). For the CSP of Figure 2, valuese andf are
NI for V2. If we had all the solutions of this CSP we would
find that the valuesd, e, andf are interchangeable forV2.
Identifying such a situation may require finding all solutions
to the CSP and hence is likely intractable.

2.3 Static and dynamic bundling
Benson and Freuder used NI to improve search (1992). A
weaker form of NI, calledneighborhood interchangeability
according to one constraint(NIC), was also used in search
by Haselböck (1993). This search process yields solutions
where some variables have a set of equivalent values, called
a bundle. Both papers compute interchangeability setsprior
to search, which corresponds tostatic bundling. Figure 4
shows a search tree for the example of Figure 2 without
bundling (left) and with static bundling (center).

Freuder (1991) noticed that computing interchangeabil-
ity during problem solving results in a weak type of in-
terchangeability,dynamic interchangeability. Beckwith et

Input : V

1 current-node← Root, root of the discrimination tree
2 for each valuea ∈ DV do
3 for each variableVj ∈ NEIGHBORS(V ) do
4 for each valuex ∈ DVj

consistent witha for V do
5 if current-nodehas a child nodent with ‘〈Vj x〉’

then current-node← nt else
Generatent a node with ‘〈Vj x〉’ and make
it a child of current-node

6 current-node← nt

end
end

7 Add ‘V, {a}’ to annotation ofcurrent-node
8 current-node← Root

end
end
Output : Root

Algorithm 1: Algorithm for building DT(V ).
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Figure 4:Search with no, static, and dynamic bundling.

al. (2001) and Choueiry and Davis (2002) showed how to
recompute interchangeability partitionsduring search such
that the resulting process,dynamic bundling(DynBndl), is
always beneficial: it yields larger bundles and reduces the
search effort. Figure 4 (right) shows the tree generated by
dynamic bundling. The computational savings can be traced
to:

1. bundling,

2. factoring out no-goods, and

3. reusing information from the discrimination tree for for-
ward checking.

Further, they showed that, in comparison to dynamic
bundling, static bundling is prohibitively expensive, particu-
larly ineffective, and should be avoided.

The Cross Product Representation (CPR) (Hubbe and
Freuder 1989) yields the same resulting bundles as dynamic
bundling, but it requires more space and does not bundle no-
goods. CPR necessarily visits more nodes than DynBndl,
even though the difference is polynomially bounded.

3 Dynamic Bundling for non-binary CSPs
In this section we first a mechanism for computing NI values
in the presence of non-binary constraints. Then, we discuss
how non-binary constraints are updated for FC. Finally, we
describe the integration of the computation of interchange-
ability with search, which we call dynamic bundling. We
also illustrate the compaction of the solution space and the
factoring of no-goods.



3.1 NI for non-binary constraints
A direct application of Algorithm 1 to non-binary CSPs may
yield incorrect results. Consider the CSP defined in Fig-
ures 5 and 6. It is clear from the definition ofC1 that〈V x〉

V2

V3

V1

C 2

C 1

V

Figure 5:CSP.

C1 C2

V V1 V2 V V1 V3

x a 1 x a 1
x b 2 x b 2
x c 3 x c 3
x d 1 y a 1
y a 1 y b 2
y b 2 y c 3
y c 3

Figure 6:C1, C2.

and 〈V y〉 are consistent with unequal sets of tuples and
thus are not interchangeable. We show that a direct appli-
cation of Algorithm 1 detects them as interchangeable be-
cause they are consistent with the same variable-value pairs
in the neighborhood ofV . Indeed, Line 4 of Algorithm 1 re-
quires checking consistency according toall the constraints
defined onV . The values ofV1 consistent with〈V x〉 given
C1 andC2 are{a, b, c} (i.e.,{a, b, c, d} givenC1 and{a, b,
c} givenC2). Similarly the values forV2 andV3 consistent
with 〈V x〉 given the constraints are{1, 2, 3} and{1, 2, 3},
respectively. Finally,〈V y〉 is found to be consistent with the
same values, yielding the DT shown in Figure 7, wherex, y
are found interchangeable forV . The overlapping scopes of
constraints make the direct application of Algorithm 1 to the
non-binary case unfit.

1(<V  a>)

(<V  3>)
{x, y}

 

1(<V  b>)

1(<V  c>)

2(<V  1>)

2(<V  2>)

2(<V  3>)

3(<V  1>)

3(<V  2>)

3

Root

Figure 7:DT(V ).

Our technique is based on building a separate discrimi-
nation tree foreachof the deg constraints defined onV .
We call such a tree anon-binary discrimination tree(nb-
DT). The NI sets ofV and the domains of the neighbor-
ing variables consistent with each NI set are then derived
from ‘overlapping’ the individual nb-DTs. Below, we intro-
duce two processes. The first partitions the domain ofV by
building then combining the relevant nb-DTs; and the sec-
ond determines the values of the neighboring variables con-
sistent with each set in the partition. These two processes

are used in dynamic bundling (Section 3.3) for computing
the bundles of the current variable (Process 1) and for for-
ward checking (Process 2).

Process 1: Computing a domain partition. First, an nb-
DT is created for each one of thedeg constraints onV using
Algorithm 2. This algorithm is similar to Algorithm 1 except
that it operates only on one constraintC and compares each
value ofV with a tuple ofC.

Input : V , C

1 current-node← Root, root of the discrimination tree
2 S← SCOPE(C) \ {V}
3 for every valuev ∈ DV do
4 for every tuplet ∈ C |σV =v(t) existsdo
5 if current-nodehas a child nodent equal toπS(t)

then current-node← nt else
Generatent a node withπS(t) and make it a
child of current-node

6 current-node← nt

end
end

7 Add ‘V , {v}’ to the annotation ofcurrent-node
8 current-node← Root

end
Output : Root

Algorithm 2: Algorithm for building nb-DT(V , C).

Line 4 of Algorithm 2 replaces Line 3 and 4 of Algo-
rithm 1. σ andπ correspond respectively to the selection
and projection operators in relational algebra. The worst-
case time complexity of Algorithm 2 is linear in the size of
the constraint, which depends on the variable domain sizes
and the tightness and arity of the constraint. The cost of
building deg nb-DTs isO(deg · ak+1 · (1 − t)). Figures 8
and 9 show, for the example of Figure 1 and Table 1, the
nb-DTs forV givenC1 andC2, respectively.

(<V1 3>,  <V2 2>)
(<V1 2>, <V2 2>)

(<V1 1>, <V2 3>) (<V1 1>, <V2 1>)

(<V1 3>, <V2 3>)
{1, 2} {5, 6} {3, 4}

Root

Figure 8:nb-DT(V , C1).

(<V3 3>) (<V3 1>) (<V3 2>)

Root

{1, 2} {6} {3, 4}

{5}

Figure 9:nb-DT(V , C2).

Second, for each tree, we collect the annotations and the
path where they appear. We traverse the tree from the root to
each annotationAi and constructPi by collecting the nodes



on the path. We form a listli = (Pi, Ai) of the particular
path and the corresponding annotation, and a listLj = {li}
of these lists for each nb-DT. In the example of Figures 8
and 9:

1. For the nb-DT ofC1, L1 = (l1, l2, l3) with:

• l1 = (((〈V1 1〉, 〈V2 3〉), (〈V1 3〉, 〈V2 3〉)), {1, 2}),
• l2 = (((〈V1 3〉, 〈V2 2〉)), {5, 6}),
• l3 = (((〈V1 1〉, 〈V2 1〉), (〈V1 2〉, 〈V2 2〉)), {3, 4}).

2. For the nb-DT ofC2, L2 = (l4, l5, l6, l7) with

• l4 = (((〈V3 3〉)), {1, 2}),
• l5 = (((〈V3 nil〉)), {5}),
• l6 = (((〈V3 2〉)), {3, 4}),
• l7 = (((〈V3 2〉)), {6}).

We collect these lists inL = (L1, L2, . . . , Ld).
Third, we compute the partition ofDV by intersecting the

annotationAi from each tree using Algorithm 3 withL and
V as input parameters. The worst-case time complexity of
this algorithm isO(deg2 · a4).

Input : L, V

1 dom-values← domain ofV
2 partitioned-domain← nil
3 for every valuev remaining indom-valuesdo
4 select-path+annot←An li from everyLj ∈ L for which

v ∈ ANNOTATION(li )
5 annotation ← Intersect annotations in theselect-

path+annot
6 Add annotationto partitioned-domain
7 dom-values← dom-values\ annotation

end
Output : partitioned-domain

Algorithm 3: Intersecting annotations.

For the example of Figures 8 and 9, the domain ofV is
partitioned as{{1, 2}, {3, 4}, {5}, {6}}. We denote byEi

an element of this partition, whereEi is a set of equivalent
values ofV given the constraints that apply to it.

To reduce the cost of Process 1, we have implemented
a mechanism that automatically ‘switches off’ some opera-
tions when it becomes clear that all sets in the partition of
DV are necessarily singletons. Such an opportunity occurs
(1) when an nb-DT ofV results in annotations exclusively
made of singleton elements (see Algorithm 2); and (2) when
the intersection of the annotations returns singletons (see Al-
gorithm 3).

Process 2: Neighboring values consistent with anEi.
This process computes the values in the neighborhood ofV
that are consistent with each equivalence classEi using the
nb-DTs built in Process 1. For a givenEi, we identify the
paths{Pi} in each nb-DT such thatEi ⊆ Ai. Then, for each
X ∈ NEIGHBORS(V ), we project each pathPi on X. Inter-
secting the results of the projections yields the subset ofDX

that is consistent withEi. (We use this information below to
updateDX by forward checking after assigningEi to V .)

3.2 Forward checking with non-binary
constraints

Independently of bundling, two issues arise when applying
FC to non-binary CSPs: (1) choosing the subset of con-
straints to account for, and (2) updating their definitions to
reflect past instantiations and domain prunings. We adopt
the strategy callednFC2 (Bessièreet al. 2002), where the
constraints considered are the ones that apply to the current
variableVc and at least one future variable. The update of
a non-binary constraintC according to past instantiations
amounts to intersecting the definition ofC with the Carte-
sian product of the (updated) domains ofVc and future vari-
ables. We propose here a more efficient implementation that
uses a linear number of selection and projection operations.
Let SCOPE(C) = Va ∪ {Vc} ∪ Vb, whereVa ⊆ Vp and
Vb ⊆ Vf . The domains of variables in{Vc} ∪ Vb might
have already been filtered by FC, and certain tuples inC
might have become invalid. Thus, we need to select the tu-
ples of C that have survived the filtering by FC after the
instantiation of past variables. The selected tuples must sat-
isfy: (1) 〈Vi ai〉 for Vi ∈ Va andai the instantiation ofVi;
and (2)aj ∈ DVj

for Vj ∈ {Vc} ∪ Va, whereDVj
are fil-

tered domains. We denote this operationσFC
Vp

(C). In order

to compute the updated constraint, we projectσFC
Vp

(C) on
{Vc} ∪ Vb,

C′ = π{Vc}∪Vb
(σFC

Vp
(C)). (1)

The way non-binary FC (without bundling) is implemented
significantly affects the number of constraint checks and
CPU time spent to solve a CSP. If a given instantiation for
Vc is later discarded when search backtracks toVc, then the
same updated constraintC′ of Equation (1) can be reused
because it is valid for all values inDVc

. Hence, we choose
to store eachC′ associated withVc. Note that by doing so
we level the playing field for the two algorithms being com-
pared (i.e., DynBndl and FC). Thus, our empirical results
reflect the gain due purely to bundling and exclude the ben-
efits gained from the additional nb-DT data structure.

3.3 Dynamic bundling

DynBndl operates by assigning a bundle toVc and propa-
gating the effect of this decision on the future variables. The
bundles ofVc are obtained by applying Process 1 of Sec-
tion 3.1 using the constraints onVc determined bynFC2.
Each constraint passed to Algorithm 2 is computed using
Equation (1). The effects of this instantiation are then prop-
agated using Process 2 of Section 3.1. Figure 10 (left) shows
partially the search tree explored by FC for the example in
Figure 1 and Table 1 with variable ordering{V , V1, V2, V3,
V4}. Figure 10 (right) shows the one explored by DynBndl.
This example illustrates two situations that result in perfor-
mance gain: bundling of no-goods and bundling of solu-
tions. When DynBndl assigns{1,2} to V , {1,3} to V1 and
{3} to V2, DV3

is annihilated after visiting 3 nodes, whereas
FC visits 10. This situation illustrates the gains of no-good
bundling. When DynBndl next assigns{3,4} to V , search
succeeds and DynBndl yields 2 solutions, while FC yields a
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Figure 10:Search tree with FC (left) and with DynBndl (right).

single solution. More generally, under the same variable and
value ordering, DynBndl visits no more nodes than FC.

The use of a MAC-like, full lookahead schema (Sabin
and Freuder 1994) necessarily performs a better filtering of
the domains ofVf . While full lookahead may increase the
number of constraint checks, it may yield ‘fatter’ solution
bundles and reduce of number of nodes visited. Note that
DynBndl, while it partitions the set of solutions (i.e., every
solution appears in exactly one bundle), does not guarantee
that the size of the solution bundle is maximal (i.e., the size
of the bundle cannot be increased (Lesaint 1994)).

Since building an nb-DT requires the enumeration of a
constraint’s tuples, our technique may be cumbersome to use
in presence of one or more global constraints that typically
have an exponential size. We can still apply our techniques
to the problem from which we have removed the bulky
global constraints, and then use the discarded constraints
to discriminate among the solutions produced in a solution
bundle. This approach is reminiscent of multi-dimensional
CSPs by (Freuder and Sabin 1997).

4 Evaluation
Below we discuss the choice of test problems and our ex-
perimental set-up, then summarize the results of our experi-
ments on evaluating the effectiveness of bundling in terms of
returning multiple solutions and reducing the cost of search.

The first experiment aims at demonstrating the effect of
varying constraint tightness (see Section 4.3). It shows that
dynamic bundling is able to find multiple solutions even in
the area of the phase transition, where it is also most effec-
tive in reducing the cost of search. The second experiment
focuses on the area of the phase transition and investigates
the effect of varying domain size (see Section 4.4). It shows
that increasing domain size increases the benefit of dynamic
bundling.

4.1 Choice of test problems
Neighborhood interchangeability aims at detecting equiva-
lent values in the domain of a given CSP variable. It does not
pretend to uncover permutations of values across variables,
which is isomorphic interchangeability and is the focus of
most work on symmetry in CSPs. One can expect neigh-
borhood interchangeability, and its weaker version used in
dynamic bundling, to be useful in real-world applications

where domain redundancy exists or appears during search.
This is not the case of the benchmark problems used for
symmetric CSPs. While looking for (strong or weak) NI
sets is cost effective and should be always attempted, no
technique can find multiple robust solutions in permutation
problems where there are exactly as many variables as there
are values.

The primary practical advantage of bundling is the pro-
duction of robust solutions, where any value in a bundle
for a given variable can replace any other value in the bun-
dle should the former become unavailable or undesirable.
The practical usefulness of neighborhood interchangeability
was established in case-based reasoning (Neagu and Falt-
ings 2001), nurse scheduling (Weil and Heus 1998), and
databases (Lal and Choueiry 2004). For example, in (Lal
and Choueiry 2004) we reduced the size of a query result
on a real-world database by 54% (yet storing the same in-
formation). While we still need to validate our approach
on real-world applications, in this paper, we focus on in-
troducing the techniques and their implementation and test
our algorithms on randomly generated CSPs. Even though
such problems lack the redundancy one expects to find
in real-world applications (which makes them particularly
amenable to bundling), our experiments show that dynamic
bundling effectively yields multiple robust solutions.

4.2 Experiment design and set-up

In our experiments, we compared the performance of
backtrack search with forward checking (FC) and back-
track search with forward checking and dynamic bundling
(DynBndl) using the least domain (respectively, the least
number of bundles in a domain) heuristic for dynamic vari-
able ordering. We describe a non-binary CSP with the tuple
〈n, a, p2, c3, c4, t〉, where:

• n the number of variables,

• a the domain size,

• p2 the ratio of binary constraints,c3 andc4 the number of
ternary and quaternary constraint respectively,

• andt the constraint tightness.

We used a uniform random generator. While varyingt, we
tested the following 16 combinations:

• n={20, 30},

• a={10, 15}, and

• Constraint ratio (CR)={CR1, CR2, CR3, CR4} defined in
Table 2.

We included datasets that we expect to be less favorable to
bundling (e.g.,n = 20,a = 10, CR = CR4) and more favor-
able to bundling (e.g.,n =30,a = 15, CR = CR1) given the
larger domain size and the smaller constraint ratio.

We measured the size of the first solution bundle (FBS),
CPU time, number of nodes visitedNV, and number of con-
straint checks (CC). FBS is an indicator of the effectiveness
of bundling in returning multiple solutions. CPU time,NV,
andCC are indicators of the cost of problem solving.



Table 2:Constraint ratios of random instances.

Constraint Ratio (CR) p2 c3 c4

CR1 0.25 3 2
CR2 0.25 6 5
CR3 0.4 3 2
CR4 0.4 6 5

Following the guidance of expert statisticians, we ap-
plied a log transformation on the numerical results to re-
duce high variance and fit the chosen statistical model. We
used ANOVA (ANalysis of VAriances) to study the interac-
tion of DynBndl and FC while varyingt (Rees 2001). At
everyt, we estimated the difference in the mean values of
a given measurement and the confidence intervals of these
values using the t-distribution. The ANOVA results indicate
whether there is a statistically significant difference in the
mean values of DynBndl and FC. We chose a size sample of
1000 instances after running a pilot experiment with 10000
instances and identifying where the plot of moving averages
stabilized. Below we report the results of varying tightness
then the effect of increasinga.

4.3 Varying tightness
Figure 11 shows the CPU time (lower curves) and number
of nodes visited (upper curves) for FC and DynBndl. It also
lists in a table the first bundle size for various values of con-
straint tightness. Quite expectedly, the largest FBS occurs at
low tightness values, however, DynBndl finds non-singleton
solution bundles also well into the area of the phase tran-
sition. Below, we distinguish three regions: low tightness,
around the cross-over point, and high tightness.
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Figure 11:CPU time and #NV.

At low tightness (t ≤ 0.425), the first solution (bundle)
is found without much backtracking. The benefit of
DynBndl here is the large FBS. For example, we have
FBS=33 att=0.350. (Not shown here, forn=30, d=15,

CR1, t=0.350, we have FBS=2254.7 (Lal 2005).) The
benefit of bundling no-goods is not yet visible.
While the cost of computing the bundles is visible (the
constraint definitions are large), the overhead can be ig-
nored given the short total time for solving the problems.
At t=0.425 ANOVA shows no significant difference be-
tween the CPU time of DynBndl and FC: the overhead of
computing the bundles is compensated by the bundling of
no-goods.

Around the cross-over point (0.425 < t ≤ 0.500),
DynBndl still yields multiple solutions (e.g., FBS=5 at
t=0.450 and FBS=2.3 att=0.462).
Further, bundling of no-goods by DynBndl becomes
prevalent yielding the maximum amount of savings inNV,
CC, and CPU time.
ANOVA indicates significant improvement of DynBndl
over FC across the entire region.

For high tightness (0.500 < t), forward checking effec-
tively detects that most of the CSPs are not solvable early
on in the search process, thus reducingNV.
The overhead of bundling shows up again however
ANOVA indicates that DynBndl and FC are still compa-
rable att=0.600.

4.4 Effect of increasing domain size
Table 3 shows, in the phase-transition region, the average
improvement of FBS and CPU time when increasing the do-
main size. We compute the improvement of a measurement
X as:

Improvement(X) =
X(FC) − X(DynBndl)

X(FC)
.

In short, increasing domain size increases the value of FBS
and also the CPU time savings by DynBndl. While the cost
of computing NI sets increases with the domain size (i.e.,
O(deg · ak+1 · (1 − t)), see Section 3.1), our experiments
show that the savings due to the no-good bundling offsets
this cost increase. This feature is especially promising inthe
context of application to databases where large domain sizes
are typical.

Table 3:Increasinga (n=30) around phase transition.

CR FBS CPU improvement
a=10 a=15 a=10 a=15

CR1 5.55 11.93 33.35% 34.32%
CR2 5.01 5.52 28.58% 33.01%
CR3 3.55 4.95 29.82% 31.66%
CR4 1.23 1.43 28.45% 31.65%

5 Conclusions and future work
This paper describes how to compute NI sets and discusses
their use for dynamic bundling in non-binary CSPs. In the
future, we propose to evaluate the effectiveness of our tech-
niques on custom document assembly (Purvis 2002) and



query optimization using materialized views in databases.
We believe that the area of databases, where the constraints
are typically defined in extension as (very large) tables, is
particularly well-suited for the use of dynamic bundling
techniques as we demonstrated in (Lal and Choueiry 2004)
and discussed in more detail in (Lal 2005).

Acknowledgments. The authors are grateful to Nic Wil-
son and Steve Prestwich for their comments, and to Brad-
ford Danner for his help with the statistical analysis. This
work was supported by the Maude Hammond Fling Faculty
Research Fellowship, CAREER Award #0133568 from the
National Science Foundation, and Science Foundation Ire-
land under Grant 00/PI.1/C075. The experiments were con-
ducted on the Research Computing Facility of UNL.

References
Beckwith, A.M.; Choueiry, B.Y.; and Zou, H. 2001. How
the Level of Interchangeability Embedded in a Finite Con-
straint Satisfaction Problem Affects the Performance of
Search. InAustralian Joint Conf. on AI, LNAI 2256. 50–
61.

Benson, B.W. and Freuder, E.C. 1992. Interchangeability
Preprocessing Can Improve Forward Checking Search. In
Proc. of ECAI. 28–30.

Bessière, C.; Meseguer, P.; Freuder, E.C.; and Larrosa, J.
2002. On Forward Checking for Non-binary Constraint
Satisfaction.Artificial Intelligence141 (1-2):205–224.

Cheeseman, P.; Kanefsky, B.; and Taylor, W.M. 1991.
Where the Really Hard Problems Are. InProc. of IJCAI.
331–337.

Choueiry, B.Y. and Davis, A.M. 2002. Dynamic Bundling:
Less Effort for More Solutions. InProc. of SARA, volume
2371 ofLNAI. Springer. 64–82.

Freuder, E.C. and Sabin, D. 1997. Interchangeabil-
ity Supports Abstraction and Reformulation for Multi-
Dimensional Constraint Satisfaction. InProc. of AAAI.
191–196.

Freuder, E.C. 1991. Eliminating Interchangeable Values in
Constraint Satisfaction Problems. InProc. of AAAI. 227–
233.

Ginsberg, M.L.; Parkes, A.J.; and Roy, A. 1998. Super-
models and Robustness. InProc. of AAAI. 334–339.

Glaisher, J.W.L. 1874. On the Problem of the Eight
Queens.Philosophical Magazine, series 448:457–467.
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