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Abstract. We propose an improved restart strategy for randomized backtrack
search, and evaluate its performance by comparing to other heuristic and stochas-
tic search techniques for solving random problems and a tight real-world resource
allocation problem. The restart strategy proposed by Gomes et al. [1] requires the
specification of a cutoff value determined from an overall profile of the cost of
search for solving the problem. When no such profile is known, the cutoff value
is chosen by trial-and-error. The Randomization and Geometric Restart (RGR)
proposed by Walsh does not rely on a cost profile but determines the cutoff value
as a function of a constant parameter and the number of variables in the problem
[2]. Unlike these strategies, which have fixed restart schedules, our technique
(RDGR) dynamically adapts the value of the cutoff parameter to the results of the
search process. Our experiments investigate the behavior of these techniques us-
ing the cumulative distribution of the solutions, over different run-time durations,
values of the cutoff, and problem types. We show that distinguishing between
solvable and over-constrained problem instances yields new insights on the rela-
tive performance of the search techniques tested. We propose to use this charac-
terization as a basis for building new strategies of cooperative, hybrid search.

1 Introduction

We have developed a system for modeling and solving a resource allocation problem,
which is the assignment of Graduate Teaching Assistants (GTA) to courses in our de-
partment [3]. We exploit this system as a platform for developing and characterizing
new problem-solving strategies. The research we describe in this paper was motivated
and enabled by this project. However, our results are here extended beyond this partic-
ular application.

The Graduate Teaching Assistants Assignment Problem (GTAAP) is a critical and
arduous task that the department’s administration has to drudge through every semester.
By focusing our investigations on this particular real-world application, we have been
able to identify and compare the advantages and shortcomings of the various search
strategies we have implemented to solve this problem. Such an insight is unlikely to be
gained from testing toy problems, and surely difficult from testing random problem:s.
We show that the identified behaviors apply beyond our application. The contributions
of this paper are as follows: (1) The development of a new dynamic restart strategy for
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randomized backtrack search, and (2) an empirical evaluation of the performance of this
new strategy and a comparison with other heuristic and stochastic search techniques on
a real-world problem and on randomly generated binary CSPs.

This paper is structured as follows. Section 2 describes the GTA assignment prob-
lem (GTAAP) and our implementations of a backtrack search, a local search, and a
multi-agent search technique for solving it. Section 3 introduces our new proposed
dynamic restart strategy for randomized backtrack search and our implementation of
Walsh’s restart strategy [2]. Section 4 presents our experiments and our observations.
Finally, Section 5 concludes the paper and provides directions for future research.

2 GTA Assignment Problem

Given a set of Graduate Teaching Assistants (GTAs), a set of courses, and a set of
constraints that specify allowable assignments of GTAs to courses, the goal is to find
a consistent and satisfactory assignment [4-6]. Hard constraints (e.g., a GTA’s com-
petence, availability, and employment capacity) must be met, and GTA’s preferences
for courses (expressed on a scale from 0 to 5) must be maximized. Typically, every
semester, the department has about 70 different academic tasks and can hire between
25 and 40 GTAs. Instances of this problem, collected since Spring 2001, are consis-
tently tight and often over-constrained. The objective is to ensure GTA support to as
many courses as possible by finding a maximal consistent partial-assignment. Because
the hard constraints cannot be violated, the problem cannot be modeled as a MAX-CSP
[7]. Our constraint-model represents the courses as variables, the GTAs as domain val-
ues, and the assignment rules as a number of unary, binary, and non-binary constraints.
We define the problem as the task of finding the longest assignment, as a primary crite-
rion, and maximizing GTAs’ preferences, as a secondary criterion. (We model the latter
as the value of the geometric mean of GTAs’ preferences in an assignment.) We imple-
mented a number of search strategies for solving this problem (summarized below). We
tested these search techniques on the real-world data-sets shown in Table 1. Each course
has a load that indicates the weight of the course. For example, a value of 0.5 means this
course needs one-half of a GTA. The toral load of a semester is the cumulative load of
the individual courses. Each GTA has a capacity factor which indicates the maximum
course weight he/she can be assigned during the semester. The sum of the capacities of
all GTAs represents the total capacity.

Table 1. Characteristics of the data sets.

Data set Spring2001b|Fall2001b|Fall2002|Fall2002-NP|Spring2003|Spring2003-NP
Reference 1 2 3 4 5 6
Solvable? X Vv X X IV v
#Variables 69 65 31 59 54 64

Max domain size 26 34 28 28 34 34

Total capacity 26 30 11.5 27 27.5 31

Total load 29.6 29.3 13 29.5 27.4 30.2

Ratio = 1oL Capacty | () gg .02 | 088 091 1.00 1.02
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We compare our new dynamic restart strategy (RDGR) with a heuristic backtrack
search (BT) with various ordering heuristics, a greedy local search (LS), a multi-agent-
based search (ERA), and a randomized backtrack search with restart (RGR). All strate-
gies implement the above two optimization criteria, except ERA, which models the
GTAAP as a satisfaction problem. These search techniques were separately imple-
mented on the same model and data structures by students competing to produce the
best results. Below, we summarize the design of BT, LS, and ERA.

2.1 Heuristic Backtrack Search

Our heuristic backtrack (BT) search is a depth-first search with forward checking [8].
Because the problem may be over-constrained, we modified the backtrack mechanism
to allow null assignments and proceed toward the longest solution in a branch-and-
bound manner (i.e., backtracking is not performed when a domain is wiped-out as long
as there are future variables with no empty domains). This solution is equivalent to
adding a dummy value in the variables’ domains. Our implementation is described in
detail in [5]. We have implemented several ordering heuristics to improve the perfor-
mance of search (see [9]). Our experiments showed that dynamic variable ordering is
consistently superior to static ordering, but that the influence of the other factors is not
significant in the context of our application.

All these strategies exhibited a serious vulnerability to thrashing (i.e., searching
unpromising parts of the search space), which seriously undermined their ability to
explore wider areas of the search space. Indeed, although BT is theoretically sound and
complete, the size of the search space makes such guarantees meaningless in practice.
Figure 1 illustrates the gravity of thrashing for a problem with 69 variables and 26
values. We define the ‘shallowest level’ as the shallowest level in a search tree attained
by the backtracking mechanism along any given path. The percentage denotes the ratio
number Oiu‘ﬁlgjfﬁ?\;jgﬂgye“ level Tdeed, the shallowest level of backtrack achieved
after 24 hours (26%) is not significantly better than that reached after 1 minute (20%)
of search, never revising the initial assignment of 74% of the variables. Figure 2 shows,
for each data set, the number of variables, the longest solution (max depth), and the
shallowest BT levels in terms of the level and the percentage of backtracking in the
search tree attained after 5 minutes and 6 hours.

Data| # BT running for..
set |Vars 5 min 6 hours

Max |Shallowest|| Max [Shallowest
depth(level % ||depth{level %
69 || 57 | 53 23%]| 57 | 51 26%
65 || 63 |55 15%| 63 | 54 16%
31| 28 | 13 58% | 28 | 3 90 %
59 || 49 | 48 18%| 50 | 45 23 %
54 || 52 | 44 18%| 54 | 41 24 %
64 || 62 | 54 15%| 62 | 47 26 %

Shallowest level
reached by BT after..
24 hr: 51 (26%) —
1 min: 55 (20%)—
Max depth: 57
Number of

variables: 69

AN AW =

Fig. 1. BT thrashing in large search spaces. Fig. 2. BT search thrashing.
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Table 2. Performance of BT for various running times.

Data set 1 (69 variables, over-constrained)

Running time 30 sec | 5 min | 30 min | 1 hour | 6 hours | 24 hours
Shallowest BT level 54 53 52 52 51 51
Longest solution 57 57 57 57 57 57
Geometric mean of 2.15 2.17 2.17 2.21 2.27 2.27
preference values

# Backtracks 1835 47951 261536 | 532787 | 3274767 | 13070031
# Nodes visited 3526 89788 | 486462 | 989136 | 6059638 | 24146133
# Constraint checks | 8.50E+07 | 3.17E+08 | 1.81E+09 | 3.58E+09 | 2.16E+10 | 8.70E+10

As the problem size increases, the effects of thrashing become more important. Ta-
ble 2 shows the performance of BT on data set 1 for various run times. Even after letting
our best heuristic backtrack search run for over 24 hours, the quality of the solution, in
terms of solution length, is not improved. The improvement of the assignment quality,
in terms of the geometric mean of the preference values, is insignificant. Finally, we
notice that the assignment of the first 51 variables in the ordering was never undone.
Consequently, in practice, completeness is a purely theoretical feature.

2.2 Local Search

Zou and Choueiry designed and implemented a greedy, local search (LS) technique for
the GTAAP system [10—12]. It is a hill-climbing search using the min-conflict heuristic
for value selection [13]. It begins with a complete, random assignment (not necessar-
ily consistent), and tries to improve it by changing inconsistent assignments in order
to reduce the number of constraint violations. In order to deal effectively with global
constraints (e.g., capacity constraints), we identify, one at a time and in random order, a
variable that satisfies all remaining constraints as consistent, and propagate the effects
of this consistent assignment by filtering the domains of the remaining variables. This
design decision effectively handles non-binary constraints. Our local search is greedy in
the sense that consistent assignments are not undone. Moreover, a random-walk strat-
egy is applied to escape from local optima [14]. With a probability (1 — p), the value of
a variable is chosen using the min-conflict heuristic, and with probability p this value is
chosen randomly. Following the indications of [14] and after testing, p = 0.02 is used.
Finally, random restarts are used to break out of local optima.

2.3 Multi-agent Search

Liu et al. proposed the ERA algorithm (Environment, Reactive rules, and Agents) as a
multi-agent-based search for solving CSPs [15]. Zou and Choueiry implemented and
tested ERA for solving GTAAP [10-12]. In ERA, each agent represents a variable. The
positions of an agent in the environment correspond to the values in the domain of the
variable. Starting from a random positioning of the agents in the environment, each
agent evaluates the quality of its positions given the positions of the remaining agents
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and decides to move to what seems to be the best position, the choice being determined
stochastically by the reactive rules. The agents keep moving until they all reach a satis-
fying position (i.e., a full, consistent solution) or a certain time period has elapsed. This
algorithm acts as an ‘extremely’ decentralized local search, where any agent can move
to any position, likely forcing other agents to seek other positions. Zou and Choueiry
showed that the extreme mobility of agents in the environment is the reason behind
ERA’s amazing immunity to local optima [10-12]. They found that ERA is indeed the
only search technique to solve GTAAP instances that remain unsolved by all other tech-
niques tested. They uncovered the weakness of ERA on over-constrained problems and
characterized it as a livelock phenomenon (where some agents keep forcing each oth-
ers out of chosen positions thus causing cycles and undermining the stability of search).
Finally, they showed how this phenomenon can be advantageously used to isolate, iden-
tify, and represent conflicts in a compact manner.

3 Randomized BT Search with Restarts

Unlike ERA and local search, general backtrack (BT) search is, in principle, com-
plete and sound. However, the performance of heuristic BT is seriously undermined
by thrashing. Thrashing can be explained by incorrect heuristic choices made early in
the search process. We explore randomization in BT as a way to overcome this short-
coming of systematic search. First we review the main concepts, then we describe the
two strategies that we tested.

Gomes et al. demonstrated that randomization of heuristic choices combined with
restart mechanisms is effective in overcoming the effects of thrashing and in reducing
the total execution time of systematic BT search [1]. Thrashing in BT search indicates
that search is stuck exploring an unpromising part of the search space, and thus inca-
pable of improving the quality of the current solution. It becomes apparent that there is
a need to interrupt search and to explore other areas of the search space. It is important
to restart search from a different portion of the search space; otherwise it will end up
traversing the same paths. Randomization of branching during search is used to this end.
Randomness can be introduced in the variable and/or value ordering heuristics, either
for tie-breaking or for variable and/or value selection. After choosing a randomization
method, the algorithm designer must decide on the type of restart mechanism. This
restart mechanism determines when to abandon a particular run and restart the search.
Here the tradeoff is that reducing the cutoff time reduces the probability of reaching a
solution at a particular run. Several restart strategies have been proposed with different
cutoff schedules. Some of the better known ones are the fixed-cutoff strategy and Luby
et al.’s universal strategy [16], the randomization and rapid restart (RRR) of Gomes
et al. [1], and the randomization and geometric restarts (RGR) of Walsh [2]. Among
the above listed restart strategies, RRR and RGR have been studied and empirically
tested in the context of CSPs. All of these restart strategies are static in nature, i.e. the
cutoff value for each restart is independent of the progress made during search. Some
restart strategies (e.g., fixed-cutoff strategy of [16] and RRR [1]) employ an optimal
cutoff value that is fixed for all the restarts of a particular problem instance. The esti-
mation of the optimal cutoff value requires a priori knowledge of the cost distribution of
that problem instance, which is not known in most settings and must be determined by
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trial-and-error. This is clearly not practical for real-world applications. There are other
restart strategies that do not need any a priori knowledge (e.g., Luby et al.’s universal
strategy [16] and Walsh’s RGR [2]). They utilize the idea of an increasing cutoff value
in order to ensure the completeness of search. However, if these restart strategies do
not find a solution after the initial few restarts, then the increasing cutoff value leads to
fewer restarts, which may yield thrashing and diminishes the benefits of restart. We pro-
pose a restart strategy that dynamically adapts the cutoff value for each restart based on
the performance of previous restarts. Our strategy loses the guarantee of completeness,
which, anyway, is not achievable on large problems.

3.1 Randomization and Geometric Restarts

Walsh proposed the Randomization and Geometric Restarts (RGR) strategy to automate
the choice of the cutoff value [2]. According to RGR, search proceeds until it reaches
a cutoff value for the number of nodes visited. The cutoff value for each restart is a
constant factor, r, larger than the previous run. The initial cutoff is equal to the number
of variables n. This fixes the cutoff value of the i restart at n.r* nodes. The geometri-
cally increasing cutoff value ensures completeness with the hope of solving the problem
before the cutoff value increases to a large value. We studied various values of r and
report them in Section 4.2. We combined this restart strategy with the backtrack search
of Section 2.1, randomizing the selection of variable-value pairs.

3.2 Randomization and Dynamic Geometric Restarts

We now introduce a simple but effective improvement to RGR. All static restart strate-
gies suffer from the problem of increasing cutoff values after each restart. While this
ensures completeness of the search, it results in fewer restarts, thus increasing the like-
lihood of thrashing and diminishing the probability of finding a solution. Our proposed
strategy, Randomization and Dynamic Geometric Restarts (RDGR), aims to attenuate
this effect. It operates by not increasing the cutoff value for the following restart when-
ever the quality of the current best solution is not improved upon. When the current
restart improves on the current best solution, then the cutoff value is increased geomet-
rically, similar to RGR. Because the cutoff value does not necessarily increase, com-
pleteness is no longer guaranteed. This situation is acceptable in application domains
(like ours) with large problem size where completeness is, anyway, infeasible in prac-
tice. Smaller cutoff values result in a larger number of restarts taking place in RDGR
than RGR, which increases the probability of finding a solution. All other implementa-
tion details are similar to RGR.

Let C; be cutoff value for the i*" restart and r be the ratio used to increase the cutoff
value. In RGR the cutoff value is updated according to the equation: C; 1 = r.C;. We
use the following equation in RDGR:

ey

O — 7.C; when the solution has improved at the i" restart
H1 7 ¢, otherwise

In RGR, the cutoff value for each restart is determined independently of how search per-
formed at the previous step. However, this is not the case for RDGR. Each time search
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200
Random binary CSP

180

160

——RGR,r=2

/ ----RGR,r=1.1

120 ~--RDGR,r=2
/ ----RDGR, r=1.1

Cutoff value
3
8

0 10 20 30 40 50 60 70 80 90 100
Number of restarts

Fig. 3. Increase of the cutoff value (3 minutes).

begins with a different random seed, it traverses different search paths. Some paths may
be more fruitful than others. RGR and RDGR increase the cutoff values in the same
way on search paths that improve solutions. When the solution is not being improved,
RGR keeps increasing the cutoff values, thus making RGR more of a randomized BT
search than a randomized BT search with restarts. In contrast, RDGR maintains the
cutoff value. Figure 3 shows that RGR increases the cutoff values across iterations sig-
nificantly more rapidly than RDGR does, for r=1.1 and 2 on random binary CSPs. This
explains the dynamic nature of RDGR. For problems that are not tight, solutions are
found within a few restarts, and RGR and RDGR exhibit similar behaviors. For tight
and over-constrained problems, RDGR seems to dominate RGR as we show in our
experiments (Section 4).

4 Experiments and Results

We tested and compared the above listed 5 search strategies, namely: BT (Section 2.1),
LS (Section 2.2), ERA (Section 2.3), RGR (Section 3.1), and RDGR (Section 3.2). BT
is deterministic and the other 4 search techniques (i.e., LS, ERA, RGR, and RDGR)
are stochastic. In the terminology introduced by Hoos and Stiitzle in [17], these are
optimization Las Vegas algorithms, RGR is probabilistically approximately complete
(PAC), and LS, ERA, and RDGR are essentially incomplete. We conducted the follow-
ing three sets of experiments:

1. Effect of running time on RGR and RDGR.
2. The influence of the choice of the ratio r used in RGR and RDGR.
3. Relative performance of BT, LS, ERA, RGR, and RDGR.

We compare the performance of the algorithms using the following criteria:

1. Solution quality distributions (SQD) taking as reference the longest known solution
for each data set, as recommended by Hoos and Stiitzle in [17]. SQD’s are cumu-
lative distributions of the solution quality, similar to the cumulative distributions
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Table 3. Improvements of RDGR with 95% confidence level.

Data set||{Improvements over RGR || Improvements over ERA
Lower limit| Upper limit ||Lower limit| Upper limit

1 1.16 1.61 45.16 46.77

2 1.53 1.61 -6.15 -6.15

3 3.44 3.44 27.58 31.03

4 1.85 1.85 24.07 27.77

5 0 1.85 -3.7 -3.7

6 1.56 1.56 -6.25 -6.25

of run-time in run-time distributions. The horizontal axis represents in percent the
relative deviation of the solution size s from the longest known solution s,,;, com-

(Sopt—s)100
Sopt

puted as . Thus, the point 0% on the x-axis denotes the longest solution

and, the point 50% denotes a solution that is 20% shorter that the longest solution.
The vertical axis represents the percentage of test runs.

2. Descriptive statistics of all the solutions found, for all search techniques. This in-
cludes the measures: mean, median, mode, standard deviation, minimum, and max-
imum of the solution.

3. 95% confidence interval of the mean improvement. The confidence interval was
computed using the Mann-Whitney test. Table 3 reports the improvements of
RDGR over RGR and ERA.

We tested these search techniques on the 6 real-world data-sets of the GTAAP of Table 1
and 4 sets of randomly generated problems. For the GTAAP data sets, we repeated our
experiments 500 times for all stochastic search techniques. Naturally, a single run is
sufficient for BT because it is deterministic. We found that the average run-time for all
stochastic algorithms stabilizes after 300 runs on all the GTAAP data sets, as shown
in Figure 4 for data set 1, which justifies our decision. We report the results for the
following data sets (the same qualitative observations hold across all data sets):

— Data set 1 as a representative of an over-constrained problem.
— Data set 5 as a representative of a tight but solvable problem.

For randomly generated problems, we used the model-B-type generator of Hemert [18].
We generated three types of randomly generated problems, each containing 100 in-
stances and each instance run for 3 minutes:

— Under-constrained instances. The first type of randomly generated problems are
under-constrained binary CSPs with 40 variables, uniform domain size of 20 val-
ues, 0.5 proportion of constraints, and 0.2 constraint tightness.

— Over-constrained instances. The second type of randomly generated problems are
over-constrained binary CSPs with 40 variables, uniform domain size of 20 values,
0.5 proportion of constraints, and 0.5 constraint tightness.

— Instances at the phase transition. The third type of randomly generated problems
are from the phase transition area. These are binary CSPs with 25 variables, uni-
form domain size of 15 values, 0.5 proportion of constraints, and 0.36 constraint
tightness. We split these instance into two sets, each of 100 instances, separating
solvable instances and unsolvable instances.
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Data set1: Moving averages for CPU Time

Cumulative Averages [sec]
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«J\“f”\w\m\“\wwwvmww

75 +
0 50 100 150 200 250 300 350 400 450 500

Number of samples

Fig. 4. Moving average for CPU run-times for data set 1.

4.1 Effect of the Running Time on RGR and RDGR

To compare the performance of RGR and RDGR, we tested them on various running
times for the GTAAP data sets. The results are shown in Figures 5 and 6. In both
these figures, RDGR consistently outperforms RGR over different run-times. Further,
increasing the running time has no affect on the relative dominance of algorithms.

4.2 Influence of the Ratio r

We tested RGR and RDGR with different ratios, with 5 minutes running time. For the
GTAAP problem we tested the values: 1, 1.1, 2%, 2%, 2, and 4. For the random CSPs we
tested the values: 1, 1.1, 2%, 23 ,2,3,and 4. Figures 7, 8, 9, and 10 show the influence of
the ratio r used to increase the cutoff value in RGR and RDGR. In accordance with [2],
Figures 7 and 9 show that a value of r=1.1 is the best among the values tested for RGR.

100 L | 100
+ | Dataset1 % .m
50 0l g Data set 5
/A A
g 70 g 70
g 60 ﬁ 60 [
S 55 —+-RDGR-20min
g —+—RDGR-20min 2 +- RGR-20min
g " -8~ RDGR-10min g% ok -=- RDGR-10min
& 20 —&—RDGR-5min S - RGR-10min
+-RGR-20min - —4— RDGR-5min
» = RGR-10min 2 4-RGR-5min
10 4 RGR-5min 10
0 w 0
0 2 4 6 8 10 12 14 0 2 a4 6 8 10 12 14
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This While, for RGR, this optimal ratio does not change with the problem type (i.e.,
GTAAP vs. random problem), it does for RDGR. For the GTAAP, itis r=1.1 (Figure 8).
For randomly generated problems, it is 7=2 (Figure 10). Our experiments indicate that
the curves remains flat around these ‘optima.’

4.3 Relative Performance of BT, LS, ERA, RGR, and RDGR

In this section we compare the relative performance of all the search techniques devel-
oped for the GTAAP system. Each stochastic algorithm was run 500 times of 10 min
each on the GTAAP data-set, and on 100 instances of random CSPs of 3 min each. Fig-
ures 11 and 12 show the relative performance of the search techniques on GTAAP data.
Figures 13, 14, 15, and 16 show the relative performance for the random problems. We
do not show LS and ERA in Figure 14 because they go off the scale.

Improvement of RDGR over BT: Table 4 shows that the maximum value of the solution
sizes produced by RDGR is clearly greater than that of the solution sizes produced by
BT. However, due to its stochastic nature, RDGR suffers from high instability in its
solution quality.

Superiority of RDGR over LS: The performance of RDGR is clearly superior to that of
LS (see Table 4 and Figures 11, 12, 13, 15, and 16). Although the solution quality is
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Table 4. Statistics of solution size (500 runs, 10 min each).

| | Data set 1 (69 variables, over-constrained) || Data set 5 (54 variables, tight but solvable)]

Search ||Mean|Median|Mode|Standard|Min.|Max. ||Mean|Median|Mode |Standard|Min.|Max.
deviat. deviat.

BT 57 57 57 0 57 | 57 || 52 52 52 0 52| 52
LS 47.12| 48 49 444 | 30 | 55 |(|42.88| 44 46 394 |29 | 50
ERA {[30.99| 31 32 437 | 18 | 45 (|53.99| 54 54 0.04 |53 | 54
RDGR|/59.66| 60 60 0.77 | 58 | 62 (|52.17| 52 52 0.78 | 50 | 54
RGR ||58.27| 58 58 2.83 | 23| 62 [|51.70| 52 52 1.04 |49 | 54
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Fig.13. SQDs: under-constrained, random Fig.14. SQDs: over-constrained, random
CSPs. CSPs.

highly variable for both RDGR and LS, the low mean value of the solution quality of
LS ensures that RDGR remains superior to LS.

Superiority of RDGR over ERA on Over-Constrained Problems: On over-constrained
problems (Figure 11 and Table 3), the deadlock phenomenon prevents ERA from find-
ing solutions of quality comparable to those found by the other techniques [10-12].
BT, LS, RDGR, and RGR do not exhibit such a dichotomy of behavior between over-
constrained cases and solvable instances.
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Performance of ERA: On solvable problem instances (Figures 12 and 13), ERA dom-
inates all techniques. It is the only algorithm that finds complete solutions for nearly
all the runs. ERA completely dominates LS. However, on over-constrained problem in-
stances (Figure 11), RDGR, RGR, BT and LS are superior to ERA due to the deadlock
phenomenon. At the phase transition (Figures 15 and 16), the behavior of ERA is in-
dependent of the solvability of the problem. ERA performs only better than LS, while
RDGR, RGR and BT perform better than ERA. This difference in performance of ERA
may have to do with the structure of the randomly generated problems and the GTA
problem. More tests are needed to understand this phenomenon.

RDGR is More Stable than RGR: Table 5 shows the standard deviation of RGR and
RDGR on the GTAAP data sets. Due to their stochastic nature, RDGR and RGR tech-
niques show variation in their solution quality. However, the smaller standard deviations
of RDGR compared to RGR in Table 5 show that RDGR is relatively more stable than
RGR.

Sensitivity of LS to Local Optima: LS sensitivity to local optima makes it particularly
unattractive in our context. Even BT outperforms LS.

Table 5. Standard deviation in solution quality on GTAAP data.

Dataset]| 1 [2[3[4[5]6] 7 [ 8]
RGR  [[2.8[1.1]0.7[1.0[1.0[1.2]0.59]0.73
RDGR [[0.7]0.8]0.6]0.9]0.7[1.1]0.43]0.47

Table 6. Average number of restarts on GTAAP data.

Dataset| 1 [2] 3 [4][5]6] 7 [ 8]
RGR  [[16.7]17.4] 22.5 [14.7]22.4]19.5[ 27.8 [ 30.4
RDGR [[74.5[59.9[167.4]39.1]39.1]46.2[826.2[272.0
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Table 7. Comparing the behaviors of search strategies.

| | Characteristics |

General: Stochastic and incomplete
ERA |Tight but solvable problems: Immune to local optima
Over-constrained problems: Deadlock causes instability and yields shorter solutions

General: Stochastic, incomplete, and quickly stabilizes

LS |Tight but solvable problems: Liable to local optima, and fails to solve tight
CSPs even with random-walk and restart strategies

Over-constrained problems: Finds longer solutions than ERA

General: Stochastic, incomplete, immune to thrashing,
produces longer solutions than BT, immune to deadlock,
RDGR |reliable on unknown instances, and

immune to local optima, but less than ERA

General: Stochastic, Approximately complete,
RGR |less immune to thrashing than RDGR, and
yields shorter solutions than RDGR in general.

General: Systematic, complete (theoretically, rarely in practice),
BT |liable to thrashing, yields shorter solutions than RDGR and RGR,
stable behavior, and more stable solutions than stochastic methods in general

Larger Number of Restarts in RDGR: Table 6 shows the average number of restarts
occurring in RGR and RDGR. This confirms our expectations stated in Section 3.2 that
RDGR performs more restarts than RGR.

Summary: The following five statements, where > denotes dominance of an algorithm
over another, summarize the behavior of the 5 search strategies, also shown in Table 7:

— On unsolvable instances:
e Beyond the phase transition: RDGR > RGR > BT > LS > ERA.
e Around the phase transition: RDGR - RGR > BT > ERA > LS.
— On solvable instances:
e Beyond the phase transition: ERA >~ RDGR > RGR > BT > LS.
e Around the phase transition: two cases must be distinguished (see Figure 15).
If we focus on the percentage of problems solved (i.e., lower values of SQDs),
ERA remains the dominant technique: ERA >~ RDGR > RGR > BT >~ LS.
However, if we accept larger values of the deviation from the best solution,
then RDGR statistically dominates: RDGR - RGR > BT > ERA > LS.

5 Conclusions and Future Work

By addressing a real-world application, we are able to identify, characterize, and com-
pare the behavior of various search techniques. BT is stable but suffers from thrashing.
LS is vulnerable to local optima. ERA shows difference in performance with different
problem types: while it has an amazing ability to solve under-constrained problems, its
performance degrades on over-constrained problems due to the livelock phenomenon.
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Restart strategies effectively prevent thrashing, but their solution quality is highly vari-
able. RGR operates by increasing cutoff values at every restart, which increases its
vulnerability to thrashing. RDGR attenuates this effect by making the cutoff value de-
pend upon the result obtained at the previous restart, which increases the number of
restarts in comparison to RGR. Consequently, RDGR exhibits a more stable behavior
than RGR while yielding at least as good solutions. In the future, we plan to study the
following directions:

1. Validate our findings on other real-world case-studies.

2. Design ‘progress-aware’ restart strategies, that is, strategies that can decide, during
a given restart, whether to continue or abandon this particular execution.

3. Use our current application as a ‘platform’ to study and characterize the perfor-
mance of other deterministic and stochastic search techniques.

4. Design new search hybrids where a solution from a given technique such as ERA
is fed as a seed to another one such as heuristic backtrack search.

Acknowledgments

This work is supported by NSF grants #£EPS-0091900 and CAREER #0133568. The ex-
periments were conducted utilizing the Research Computing Facility of the University
of Nebraska-Lincoln.

References

1. Gomes, C.P., Selman, B., Kautz, H.: Boosting Combinatorial Search Through Random-
ization. In: Proceedings of the Fifteenth National Conference on Artificial Intelligence
(AAAT’98). (1998) 431-437

2. Walsh, T.: Search in a Small World. In: Proc. of the 16" TJCAL (1999) 1172-1177

3. Lim, R., Guddeti, V.P., Choueiry, B.Y.: An Interactive System for Hiring and Managing
Graduate Teaching Assistants. In: Conference on Prestigious Applications of Intelligent
Systems (ECAI 04), Valencia, Spain (2004) 730-734

4. Glaubius, R.: A Constraint Processing Approach to Assigning Graduate Teaching Assistants
to Courses. Undergraduate Honors Thesis. Department of Computer Science & Engineering,
University of Nebraska-Lincoln (2001)

5. Glaubius, R., Choueiry, B.Y.: Constraint Constraint Modeling and Reformulation in the
Context of Academic Task Assignment. In: Working Notes of the Workshop Modelling and
Solving Problems with Constraints, ECAI 2002, Lyon, France (2002)

6. Glaubius, R., Choueiry, B.Y.: Constraint Modeling in the Context of Academic Task As-
signment. In Hentenryck, P.V., ed.: 8" International Conference on Principle and Practice
of Constraint Programming (CP’02). Volume 2470 of LNCS., Springer (2002) 789

7. Freuder, E.C., Wallace, R.J.: Partial Constraint Satisfaction. Artificial Intelligence 58 (1992)
21-70

8. Prosser, P.: Hybrid Algorithms for the Constraint Satisfaction Problem. Computational
Intelligence 9 (3) (1993) 268-299

9. Guddeti, V.P.: Empirical Evaluation of Heuristic and Randomized Backtrack Search. Mas-
ter’s thesis, Computer Science & Engineering, University of Nebraska-Lincoln (2004)



70

10.

11.

12.

13.

14.

15.

16.

17.

18.

Venkata Praveen Guddeti and Berthe Y. Choueiry

Zou, H., Choueiry, B.Y.: Characterizing the Behavior of a Multi-Agent Search by Using it
to Solve a Tight, Real-World Resource Allocation Problem. In: Workshop on Applications
of Constraint Programming, Kinsale, County Cork, Ireland (2003) 81-101

Zou, H.: Iterative Improvement Techniques for Solving Tight Constraint Satisfaction Prob-
lems. Master’s thesis, Computer Science & Engineering, University of Nebraska-Lincoln
(2003)

Zou, H., Choueiry, B.Y.: Multi-agent Based Search versus Local Search and Backtrack
Search for Solving Tight CSPs: A Practical Case Study. In: Working Notes of the Workshop
on Stochastic Search Algorithms (IJCAI 03), Acapulco, Mexico (2003) 17-24

Minton, S., Johnston, M.D., Philips, A.B., Laird, P.: Minimizing Conflicts: A Heuristic
Repair Method for Constraint Satisfaction and Scheduling Problems. Artificial Intelligence
58 (1992) 161-205

Bartdk, R.: On-Line Guide to Constraint Programming.

kti.ms.mff.cuni.cz/ bartak/constraints (1998)

Liu, J,, Jing, H., Tang, Y.: Multi-Agent Oriented Constraint Satisfaction. Artificial Intelli-
gence 136 (2002) 101-144

Luby, M., Sinclair, A., Zuckerman, D.: Optimal Speedup of Las Vegas Algorithms. In: Israel
Symposium on Theory of Computing Systems. (1993) 128-133

Hoos, H., Stiitzle, T.: Stochastic Local Search Foundations and Applications. Morgan Kauf-
mann (2004)

van Hemert, J.I.: RandomCSP: generating constraint satisfaction problems randomly. home-
pages.cwi.nl/“jvhemert/randomesp.html (2004)



