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for Constraint Satisfaction: 
A Structure-Based Approach for Adjusting Consistency & Managing Propagation 
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Main Contributions 

1. Relational Neighborhood Inverse Consistency 
(RNIC) 
– Characterization on binary & non-binary CSPs 

– An algorithm for enforcing RNIC 

– Comparison to other consistency properties 

2. Variations of RNIC 
– Reformulation by redundancy removal, triangulation, 

both 

– A strategy for selecting the appropriate variation 

3. Managing constraint propagation 
– Four queue-management strategies (QMSs) 

4. Empirical evaluations on benchmark problems 
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Outline 

• Background 

• Relational Neighborhood Inverse Consistency (RNIC) 
– Property, characterization 

• Dual Graphs of Binary CSPs 
– Complete constraint network 

– Non-complete constraint network 

– RNIC on binary CSPs 

• Enforcing RNIC 
– Algorithm for RNIC 

– Dual-graph reformulation 

– Selection strategy 

• Evaluating RNIC 

• Propagation-Queue Management 

• Conclusions & Future Work 
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Constraint Satisfaction Problem 

• CSP 

– Variables, Domains  

– Constraints: Relations & scopes 

• Representation 

– Hypergraph 

– Dual graph 

• Solved with 

– Search 

– Enforcing consistency 

– Lookahead = Search + enforcing consistency 
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• Warning 

– Consistency properties vs. algorithms 
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Neighborhood Inverse Consistency 

• Property                         [Freuder+ 96] 

↪ Every value can be extended to a 

solution in its variable’s neighborhood 

↪ Domain-based property 

• Algorithm 

⧾No space overhead 

⧾Adapts to graph connectivity 
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• Binary CSPs              [Debruyene+ 01] 

⧿Not effective on sparse problems 

⧿Too costly on dense problems 

• Non-binary CSPs? 

⧿Neighborhoods likely too large 
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Relational NIC 
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• Property 

↪ Every tuple can be extended to a 

solution in its relation’s neighborhood 

↪  Relation-based property 

• Algorithm 

– Operates on dual graph 

– Filters relations 

– Does not alter topology of graphs 
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• Domain filtering 

– Property: RNIC+DF 

– Algorithm: Projection 
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From NIC to RNIC 

• Neighborhood Inverse Consistency (NIC)  [Freuder+ 96] 

– Proposed for binary CSPs  

– Operates on constraint graph 

– Filters domain of variables 

• Relational Neighborhood Inverse Consistency (RNIC) 

– Proposed for both binary & non-binary CSPs 

– Operates on dual graph 

– Filters relations; last step projects updated relations on domains 

• Both  

– Adapt consistency level to local topology of constraint network 

– Add no new relations (constraint synthesis) 

• NIC was shown to be ineffective or costly, we show that RNIC is worthwhile 
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Characterizing RNIC: Binary CSPs 

• On binary CSPs [Luchtel, 2011] 

– NIC (on the constraint graph) and RNIC (on 

the dual graph) are not comparable 

– Empirically, RNIC  does more filtering than 

NIC 
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GAC, SGAC 
• Variable-based properties 

• So far, most popular for non-

binary CSPs 

Characterizing RNIC (I): Nonbinary CSPs 

R(*,m)C [Karakashian+ 10]  
• Relation-based property 

• Every tuple has a support in 

every subproblem induced by 

a combination of m connected 

relations  
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Characterizing RNIC (II): Nonbinary CSPs 

• The fuller picture, details are in the thesis 

 

 

 
 

 

– w: Property weakened by redundancy removal 

– tri: Property strengthened by triangulation 

– δ: Degree of dual network 
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Outline 

• Background 

• Relational Neighborhood Inverse Consistency 
– Property, characterization 

• Dual Graphs of Binary CSPs 
– Complete constraint network 

– Non-complete constraint network 

– RNIC on binary CSPs 

• Enforcing RNIC 
– Algorithm for RNIC 

– Dual-graph reformulation 

– Selection strategy 

• Evaluating RNIC 

• Propagation-Queue Management 

• Conclusions & Future Work 
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Complete Binary CSPs 

• Triangle-shaped grid 

• n-1 vertices for V1 

– C1,i  i∈[2,n] 

– Completely connected 

• n-1 vertices for Vi≥2 

– Centered on C1,i 

– i-2 along horizontal 

– n-i along vertical 

– Completely connected 

• Not shown for clarity 
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• A triangle-shaped grid 

– Every CSP variable annotates 

a chain of length n-2 

– Remove edges that link two 

non-consecutive vertices 

Complete Binary CSPs: RR (I) 
• An edge is redundant if 

– There exists an alternate 

path between two vertices 

– Shared variables appear 

in every vertex in the path 

11/28/2011 Woodward-MS Thesis Defense 13 

Vn  Cn-1,n C1,n 

V1 Vn-1 

Vn  Vn  C3,n C2,n 

V2 V3 

V5  V5  V5 

C2,3 C1,3 

C3,4 C2,4 

C4,5 C1,5 

V1 

C3,5 C2,5 

V1 

V1 
V2 

V2 

V2 

V3 
V3 

V4 

V3 
V4 

V4 

V5 V2 V3 V4 V1 

V1 

uh 

uv  

C1,i C1,2 

C1,4 

R4 

BCD 

ABDE AB 

R3 

BD 

A 

D AD 

A A 
B 

R5 

R6 

D 

B 



Constraint Systems Laboratory 

Complete Binary CSPs: RR (II) 
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• A redundancy-free dual graph is not unique 

• No chain for V2, but a star 
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Non-complete Binary CSPs 
• Non-complete binary CSP 

– Is a complete binary constraint 

graph with missing edges 

• In the dual graph 

– There are missing dual vertices 

– The dual vertices with variable 

Vi in their scope are completely 

connected 

• Redundancy-free dual graph 

– Can still form a chain using 

alternate edges 
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RNIC on Binary CSPs 

• After RR, RNIC is never stronger than R(*,3)C 

• Configurations for R(*,4)C 

– C1 has three adjacent constraints C2, C3, C4 

– C1 is not an articulation point 

• Two configurations, neither is possible 
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Outline 

• Background 

• Relational Neighborhood Inverse Consistency 
– Property, characterization 

• Dual Graphs of Binary CSPs 
– Complete constraint network 

– Non-complete constraint network 

– RNIC on binary CSPs 

• Enforcing RNIC 
– Algorithm for RNIC 

– Dual-graph reformulation 

– Selection strategy 

• Evaluating RNIC 

• Propagation-Queue Management 

• Conclusions & Future Work 

11/28/2011 Woodward-MS Thesis Defense 17 



Constraint Systems Laboratory 

Algorithm for Enforcing RNIC 

• Two queues 

1. Q: relations to be updated 

2. Qt(R): The tuples of relation R 

whose supports must be verified 

• SEARCHSUPPORT(τ,R) 

– Backtrack search on Neigh(R) 

• Loop until all Qt(⋅) are empty 
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• Complexity 

– Space: O(ketδ) 

– Time: O(tδ+1eδ) 

– Efficient for a fixed δ  
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Improving Algorithm’s Performance 

1. Use IndexTree  [Karakashian+ AAAI10] 

– To quickly check consistency of 2 tuples 

2. Dynamically detect dangles 

– Tree structures may show in subproblem @ each instantiation 

– Apply directional arc consistency 
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– Not useful in R(*,m)C: small value of m, subproblem size 

– Not applicable to GAC: does not operate on dual graph 
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Reformulating the Dual Graph 
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• Cycles of length ≥ 4 

– Hampers propagation 

– RNICR(*,3)C 

• Triangulation (triRNIC) 

– Triangulate dual graph 

RR+Triangulation (wtriRNIC) 

• Local, complementary, do not ‘clash’  
wRNIC 
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Selection Strategy: Which? When? 

• Density of dual graph ≥ 15% is too dense 

– Remove redundant edges 

• Triangulation increases density no more than two fold 

– Reformulate by triangulation 

• Each reformulation executed at most once 
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Outline 

• Background 

• Relational Neighborhood Inverse Consistency 
– Property, characterization 

• Dual Graphs of Binary CSPs 
– Complete constraint network 

– Non-complete constraint network 

– RNIC on binary CSPs 

• Enforcing RNIC 
– Algorithm for RNIC 

– Dual-graph reformulation 

– Selection strategy 

• Evaluating RNIC 

• Propagation-Queue Management 

• Conclusions & Future Work 
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Experimental Setup 

• Backtrack search with full lookahead 

• We compare 

– wR(*,m)C for m = 2,3,4 

– GAC 

– RNIC and its variations 

• General conclusion 
– GAC best on random problems 

– RNIC-based best on structured/quasi-

structued  problems 

• We focus on non-binary results (960 

instances) 

– triRNIC theoretically has the least 

number of nodes visited 

– selRNIC solves most instances 

backtrack free (652 instances) 
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Category #Binary #Non-binary 

Academic 31 0 

Assignment 7 50 

Boolean 0 160 

Crossword 0 258 

Latin square 50 0 

Quasi-random 390 25 

Random 980 290 

TSP 0 30 

Unsolvable 

Memory 10 60 

All timed out 447 87 
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Experimental Results 
• Statistical analysis on CP benchmarks 

• Time: Censored data calculated mean 

• Rank: Censored data rank based on 

probability of survival data analysis 

• #F: Number of instances fastest 
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Algorithm Time Rank #F [⋅]CPU #C [⋅]Completion #BT-free 

169 instances: aim-100,aim-200,lexVg,modifiedRenault,ssa 

wR(*,2)C 944924 3 52 A 138 B 79 

wR(*,3)C 925004 4 8 B 134 B 92 

wR(*,4)C 1161261 5 2 B 132 B 108 

GAC 1711511 7 83 C 119 C 33 

RNIC 6161391 8 19 C 100 C 66 

triRNIC 3017169 9 9 C 84 C 80 

wRNIC 1184844 6 8 B 131 B 84 

wtriRNIC 937904 2 3 B 144 B 129 

selRNIC 751586 1 17 A 159 A 142 

• [⋅]CPU: Equivalence classes based on CPU 

• [⋅]Completion: Equivalence classes based on completion 

• #C: Number of instances completed 

• #BT-free: # instances solved backtrack free 
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Outline 

• Background 

• Relational Neighborhood Inverse Consistency 
– Property, characterization 

• Dual Graphs of Binary CSPs 
– Complete constraint network 

– Non-complete constraint network 

– RNIC on binary CSPs 

• Enforcing RNIC 
– Algorithm for RNIC 

– Dual-graph reformulation 

– Selection strategy 

• Evaluating RNIC 

• Propagation-Queue Management 

• Conclusions & Future Work 
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Propagation-Queue Management 

• Three directions for 
ordering the relations: 
1. Arbitrary ordering 

(previous) 

2. Perfect elimination 
ordering (PEO) of 
some triangulation 

3. Ordering of the 
maximal cliques, 
corresponds to a 
tree-decomposition 
ordering (TD) 
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Queue-Management Strategies 
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QMSa Arbitrary ordering of relations 

QMSPEO Perfect elimination ordering 
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• Cliques are traversed only once 
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D 

Same as QMSTD, except traverses 

• each clique only once 

• each relation only once 
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Propagation-Queue Management 

• Statistical analysis on CP benchmarks 

• Time: Censored data rank based on 

probability of survival data analysis 

triRNIC Pre-processing SAT UNSAT 

Strategy Time [⋅]CP

U 

% [⋅]CPU [⋅]CPU 

QMSa 1,410,292 C - A C 

QMSPEO 1,186,691 B 16% A B 

QMSTD 765,976 A 46% A A 
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wtriRNIC Pre-processing SAT UNSAT 

Strategy Time [⋅]CPU % [⋅]CPU [⋅]CPU 

QMSa 479,725 A - A B 

QMSPEO 467,747 A 2% A A 

QMSTD 476,604 A 1% A B 

triRNIC Search SAT UNSAT 

Strategy Time [⋅]CPU % [⋅]CPU [⋅]CPU 

QMSa 1,243,917 C - A C 

QMSPEO 900,069 B 28% A B 

QMSTD 416,464 A 67% A A 

QMSLTD 403,766 A 68% A A 

QMSL2TD 434,479 A 65% A A 

wtriRNIC Search SAT UNSAT 

Strategy Time [⋅]CPU % [⋅]CPU [⋅]CPU 

QMSa 628,523 C - A C 

QMSPEO 582,629 B 7% A B 

QMSTD 519,578 A 17% A A 

QMSLTD 602,437 C 4% B A 

QMSL2TD 575,277 C 8% B A 

• [⋅]CPU: Equivalence classes based on CPU 

• %: Percent increased gain by the algorithm 

 



Constraint Systems Laboratory 

Conclusions 

• RNIC 

• Structure of binary dual graph 

• Algorithm for enforcing RNIC 

– Polynomial for fixed-degree dual graphs 

– BT-free search: hints to problem tractability 

• Various reformulations of the dual graph 

• Adaptive, unifying, self-regulatory, automatic 
strategy 

• New propagation-queue management strategies 

• Empirical evidence, supported by statistics 
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Future Work 

• Extension to singleton-type consistencies 

• Extension to constraints defined in intension 

– Possible by only domain filtering (weakening) 

• Study influence of redundancy removal 

algorithms 

– Redundancy removal algorithm of [Janssen+ 89] 

seems to favor grids 

• Evaluate new queue-management strategies 

on other consistency algorithms 
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Thank You! 

Questions? 
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