Relational Neighborhood Inverse Consistency for Constraint Satisfaction:

A Structure-Based Approach for Adjusting Consistency & Managing Propagation

Robert J. Woodward

Constraint Systems Laboratory

Department of Computer Science & Engineering

University of Nebraska-Lincoln

Acknowledgements

- Software platform developed in collaboration with Shant Karakashian (to a large extent) & Chris Reeson
- Elizabeth Claassen & David B. Marx of the Department of Statistics @ UNL
- Experiments conducted at UNL's Holland Computing Center
- NSF Graduate Research Fellowship & NSF Grant No. RI-111795

Main Contributions

- Relational Neighborhood Inverse Consistency (RNIC)
 - Characterization on binary & non-binary CSPs
 - An algorithm for enforcing RNIC
 - Comparison to other consistency properties
- 2. Variations of RNIC
 - Reformulation by redundancy removal, triangulation, both
 - A strategy for selecting the appropriate variation
- 3. Managing constraint propagation
 - Four queue-management strategies (QMSs)
- 4. Empirical evaluations on benchmark problems

Outline

- Background
- Relational Neighborhood Inverse Consistency (RNIC)
 - Property, characterization
- Dual Graphs of Binary CSPs
 - Complete constraint network
 - Non-complete constraint network
 - RNIC on binary CSPs
- Enforcing RNIC
 - Algorithm for RNIC
 - Dual-graph reformulation
 - Selection strategy
- Evaluating RNIC
- Propagation-Queue Management
- Conclusions & Future Work

Constraint Satisfaction Problem

- CSP
 - Variables, Domains
 - Constraints: Relations & scopes
- Representation
 - Hypergraph
 - Dual graph
- Solved with
 - Search
 - Enforcing consistency
 - Lookahead = Search + enforcing consistency
- Warning
 - Consistency properties vs. algorithms

Hypergraph $R_1 \square R_2$ $R_3 \square C \square F$

Constraint Systems Laboratory

Neighborhood Inverse Consistency

Property

- [Freuder+96]
- → Domain-based property
- Algorithm
 - +No space overhead
 - +Adapts to graph connectivity
- Binary CSPs

- [Debruyene+ 01]
- ─Not effective on sparse problems
- Too costly on dense problems
- Non-binary CSPs?
 - Neighborhoods likely too large

Relational NIC

Property

- Every tuple can be extended to a solution in its relation's neighborhood
- → Relation-based property
- Algorithm
 - Operates on dual graph
 - Filters relations
 - Does not alter topology of graphs
- Domain filtering
 - Property: RNIC+DF
 - Algorithm: Projection

Hypergraph

Dual graph

From NIC to RNIC

Neighborhood Inverse Consistency (NIC)

[Freuder+ 96]

- Proposed for binary CSPs
- Operates on constraint graph
- Filters domain of variables
- Relational Neighborhood Inverse Consistency (RNIC)
 - Proposed for both binary & non-binary CSPs
 - Operates on dual graph
 - Filters relations; last step projects updated relations on domains
- Both
 - Adapt consistency level to local topology of constraint network
 - Add no new relations (constraint synthesis)
- NIC was shown to be ineffective or costly, we show that RNIC is worthwhile

Characterizing RNIC: Binary CSPs

On binary CSPs

[Luchtel, 2011]

- NIC (on the constraint graph) and RNIC (on the dual graph) are not comparable
- Empirically, RNIC does more filtering than NIC

Characterizing RNIC (I): Nonbinary CSPs

R(*,m)C [Karakashian+ 10]

- Relation-based property
- Every tuple has a support in every subproblem induced by a combination of m connected relations

GAC, SGAC

- Variable-based properties
- So far, most popular for nonbinary CSPs

 $p \rightarrow p'$: p is strictly weaker than p'

Nebraska Lincoln

Characterizing RNIC (II): Nonbinary CSPs

The fuller picture, details are in the thesis

- w: Property weakened by redundancy removal
- tri: Property strengthened by triangulation
- δ : Degree of dual network

Outline

- Background
- Relational Neighborhood Inverse Consistency
 - Property, characterization
- Dual Graphs of Binary CSPs
 - Complete constraint network
 - Non-complete constraint network
 - RNIC on binary CSPs
- Enforcing RNIC
 - Algorithm for RNIC
 - Dual-graph reformulation
 - Selection strategy
- Evaluating RNIC
- Propagation-Queue Management
- Conclusions & Future Work

Complete Binary CSPs

Triangle-shaped grid

• n-1 vertices for V_1

 $- C_{1,i} i \in [2,n]$

Completely connected

n-1 vertices for V_{≥2}

- Centered on $C_{1,i}$
- i-2 along horizontal
- n-i along vertical
- Completely connected
 - Not shown for clarity

Complete Binary CSPs: RR (I)

- An edge is redundant if
 - There exists an alternate path between two vertices
 - Shared variables appear in every vertex in the path

- A triangle-shaped grid
 - Every CSP variable annotates a chain of length n-2
 - Remove edges that link two non-consecutive vertices

Complete Binary CSPs: RR (II)

- A redundancy-free dual graph is not unique
- No chain for V₂, but a star

Non-complete Binary CSPs

- Non-complete binary CSP
 - Is a complete binary constraint graph with missing edges
- In the dual graph
 - There are missing dual vertices
 - The dual vertices with variable
 V_i in their scope are completely
 connected
- Redundancy-free dual graph
 - Can still form a chain using alternate edges

RNIC on Binary CSPs

- After RR, RNIC is never stronger than R(*,3)C
- Configurations for R(*,4)C
 - C_1 has three adjacent constraints C_2 , C_3 , C_4
 - $-C_1$ is not an articulation point
- Two configurations, neither is possible

Outline

- Background
- Relational Neighborhood Inverse Consistency
 - Property, characterization
- Dual Graphs of Binary CSPs
 - Complete constraint network
 - Non-complete constraint network
 - RNIC on binary CSPs
- Enforcing RNIC
 - Algorithm for RNIC
 - Dual-graph reformulation
 - Selection strategy
- Evaluating RNIC
- Propagation-Queue Management
- Conclusions & Future Work

Algorithm for Enforcing RNIC

- Two queues
 - 1. Q: relations to be updated
 - 2. $Q_t(R)$: The tuples of relation R whose supports must be verified
- SEARCHSUPPORT(τ,R)
 - Backtrack search on Neigh(R)
- Loop until all $Q_t(\cdot)$ are empty
- Complexity
 - Space: $O(ket\delta)$
 - Time: $O(t^{\delta+1}e\delta)$
 - Efficient for a fixed δ

Improving Algorithm's Performance

1. Use IndexTree

[Karakashian+ AAAI10]

To quickly check consistency of 2 tuples

2. Dynamically detect dangles

- Tree structures may show in subproblem @ each instantiation
- Apply directional arc consistency

Note that exploiting dangles is

- Not useful in R(*,m)C: small value of m, subproblem size
- Not applicable to GAC: does not operate on dual graph

Reformulating the Dual Graph

- High degree
 - Large neighborhoods
 - High computational cost
- Redundancy Removal (wRNIC)
 - Use minimal dual graph

- Cycles of length ≥ 4
 - Hampers propagation
 - RNIC≡R(*,3)C
- Triangulation (triRNIC)
 - Triangulate dual graph

RR+Triangulation (wtriRNIC)

Local, complementary, do not 'clash'

Selection Strategy: Which? When?

- Density of dual graph ≥ 15% is too dense
 - Remove redundant edges
- Triangulation increases density no more than two fold
 - Reformulate by triangulation
- Each reformulation executed at most once

Outline

- Background
- Relational Neighborhood Inverse Consistency
 - Property, characterization
- Dual Graphs of Binary CSPs
 - Complete constraint network
 - Non-complete constraint network
 - RNIC on binary CSPs
- Enforcing RNIC
 - Algorithm for RNIC
 - Dual-graph reformulation
 - Selection strategy
- Evaluating RNIC
- Propagation-Queue Management
- Conclusions & Future Work

Experimental Setup

- Backtrack search with full lookahead
- We compare
 - wR(*,m)C for m = 2,3,4
 - GAC
 - RNIC and its variations
- General conclusion
 - GAC best on random problems
 - RNIC-based best on structured/quasistructued problems
- We focus on non-binary results (960 instances)
 - triRNIC theoretically has the least number of nodes visited
 - selRNIC solves most instances backtrack free (652 instances)

Category	#Binary	#Non-binary
Academic	31	0
Assignment	7	50
Boolean	0	160
Crossword	0	258
Latin square	50	0
Quasi-random	390	25
Random	980	290
TSP	0	30
Unsolvable		
Memory	10	60
All timed out	447	87

Experimental Results

- Statistical analysis on CP benchmarks
- [·]_{CPU}: Equivalence classes based on CPU
- Time: Censored data calculated mean
- [·]_{Completion}: Equivalence classes based on completion
- Rank: Censored data rank based on probability of survival data analysis
- #C: Number of instances completed
- #BT-free: # instances solved backtrack free
- #F: Number of instances fastest

Algorithm	Time	Rank	#F	[·] _{CPU}	#C	[·] _{Completion}	#BT-free
	169 instance	s: aim-10	00,aim-2	200,lexV	g,modifie	edRenault,ssa	
wR(*,2)C	944924	3	52	A	138	В	79
wR(*,3)C	925004	4	8	В	134	В	92
wR(*,4)C	1161261	5	2	В	132	В	108
GAC	1711511	7	83	С	119	С	33
RNIC	6161391	8	19	С	100	С	66
triRNIC	3017169	9	9	С	84	С	80
wRNIC	1184844	6	8	В	131	В	84
wtriRNIC	937904	2	3	В	144	В	129
selRNIC	751586	1	17	Α	159	Α	142

Outline

- Background
- Relational Neighborhood Inverse Consistency
 - Property, characterization
- Dual Graphs of Binary CSPs
 - Complete constraint network
 - Non-complete constraint network
 - RNIC on binary CSPs
- Enforcing RNIC
 - Algorithm for RNIC
 - Dual-graph reformulation
 - Selection strategy
- Evaluating RNIC
- Propagation-Queue Management
- Conclusions & Future Work

Propagation-Queue Management

- Three directions for ordering the relations:
 - Arbitrary ordering (previous)
 - Perfect elimination ordering (PEO) of some triangulation
 - 3. Ordering of the maximal cliques, corresponds to a tree-decomposition ordering (TD)

Queue-Management Strategies

	QMS _a	Arbitrary ordering of relations		
	QMS _{PEO}	Perfect elimination ordering		
The cliques reversed back		Sequence of maximal cliques The cliques revised in sequence • Each clique is revised until quiescence • Revised back and forth until quiescence		
y	QMS _{LTD}	Same as QMS _{TD} , except • Cliques are traversed only once		
Lazy	QMS _{L2T}	Same as QMS _{TD} , except traverses • each clique only once • each relation only once		

PEO

Queue-Management Strategies

	QMS _a	Arbitrary ordering of relations	
QMS _{TD} Sequence of maximal The cliques revised in • Each clique is revise • Revised back and fo		Perfect elimination ordering	
		Sequence of maximal cliques The cliques revised in sequence • Each clique is revised until quiescence • Revised back and forth until quiescence	
.y	QMS _{LTD}	Same as QMS _{TD} , except • Cliques are traversed only once	
Lazy	QMS _{L2T}	Same as QMS _{TD} , except traverses • each clique only once • each relation only once	

maximal cliques

Propagation-Queue Management

- Statistical analysis on CP benchmarks
- Time: Censored data rank based on probability of survival data analysis
- [·]_{CPU}: Equivalence classes based on CPU
- %: Percent increased gain by the algorithm

triRNIC Pre-processing					UNSAT
Strategy	Time	[·] _{CP}	%	[·] _{CPU}	[·] _{CPU}
QMS_a	1,410,292	Č	-	Α	С
QMS_{PEO}	1,186,691	В	16%	Α	В
QMS_{TD}	765,976	Α	46%	Α	Α

wtriRN	SAT	UNSAT			
Strategy	Time	[·] _{CPU}	%	[·] _{CPU}	[·] _{CPU}
QMS _a	479,725	Α	-	Α	В
QMS_{PEO}	467,747	Α	2%	Α	A
QMS_{TD}	476,604	A	1%	A	В

triRNIC Search					UNSAT
Strategy	Time	[·] _{CPU}	%	[·] _{CPU}	[·] _{CPU}
QMS_a	1,243,917	С	-	Α	С
QMS_{PEO}	900,069	В	28%	Α	В
QMS_{TD}	416,464	A	67%	Α	A
QMS_{LTD}	403,766	Α	68%	Α	Α
QMS _{L2TD}	434,479	A	65%	A	Α

wtı	SAT	UNSAT			
Strategy	Time	[·] _{CPU}	%	[·] _{CPU}	[·] _{CPU}
QMS _a	628,523	С	-	Α	С
QMS _{PEO}	582,629	В	7%	Α	В
QMS_{TD}	519,578	Α	17%	Α	Α
QMS_{LTD}	602,437	С	4%	В	Α
QMS _{L2TD}	575,277	С	8%	В	Α

Conclusions

- RNIC
- Structure of binary dual graph
- Algorithm for enforcing RNIC
 - Polynomial for fixed-degree dual graphs
 - BT-free search: hints to problem tractability
- Various reformulations of the dual graph
- Adaptive, unifying, self-regulatory, automatic strategy
- New propagation-queue management strategies
- Empirical evidence, supported by statistics

Future Work

- Extension to singleton-type consistencies
- Extension to constraints defined in intension
 - Possible by only domain filtering (weakening)
- Study influence of redundancy removal algorithms
 - Redundancy removal algorithm of [Janssen+ 89] seems to favor grids
- Evaluate new queue-management strategies on other consistency algorithms

Thank You!

Questions?

